Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a characterb) Delete a character
c) Replace a character
这种状态如此复杂,而且当前状态与前一状态相关的情况,就是动态规划大法。
动态规划方程:
dp[i][j] = min(dp[i-1][j]+1,min(dp[i][j-1]+1,dp[i-1][j-1]+word1[i]==word2[j]?0:1
代码如下:
class Solution {
public:
int minDistance(string word1, string word2) {
int len1 = word1.length();
int len2 = word2.length();
int dp[len1+1][len2+1];
memset(dp,0,(len1+1)*(len2+1)*sizeof(int));
for(int i=0;i<len2+1;i++)
dp[0][i] = i;
for(int i=0;i<len1+1;i++)
dp[i][0] = i;
for(int i=1;i<len1+1;i++)
{
for(int j=1;j<len2+1;j++)
{
if(word1[i-1] == word2[j-1])
dp[i][j] = dp[i-1][j-1];
else
dp[i][j] = dp[i-1][j-1]+1;
if(dp[i][j] > dp[i][j-1]+1)
dp[i][j] = dp[i][j-1]+1;
if(dp[i][j] > dp[i-1][j]+1)
dp[i][j] = dp[i-1][j]+1;
}
}
return dp[len1][len2];
}
};
发现前面的还有更快的,看下了解释,因为每次更新dp[i][j]只用到dp[i-1][j],dp[i][j-1],dp[i-1][j-1],大意说可以使用O(m)或O(n)空间来完成,而不需要像上面的代码使用O(m*n)空间。