Leetcode Edit Distance

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character

c) Replace a character


这种状态如此复杂,而且当前状态与前一状态相关的情况,就是动态规划大法。

动态规划方程:
dp[i][j] = min(dp[i-1][j]+1,min(dp[i][j-1]+1,dp[i-1][j-1]+word1[i]==word2[j]?0:1


代码如下:

class Solution {
public:
    int minDistance(string word1, string word2) {
        int len1 = word1.length();
        int len2 = word2.length();
        int dp[len1+1][len2+1];
        memset(dp,0,(len1+1)*(len2+1)*sizeof(int));
        for(int i=0;i<len2+1;i++)
            dp[0][i] = i;
        for(int i=0;i<len1+1;i++)
            dp[i][0] = i;
        
        for(int i=1;i<len1+1;i++)
        {
            for(int j=1;j<len2+1;j++)
            {
                if(word1[i-1] == word2[j-1])
                    dp[i][j] =  dp[i-1][j-1];
                else
                    dp[i][j] = dp[i-1][j-1]+1;
                    
                if(dp[i][j] > dp[i][j-1]+1)
                    dp[i][j] = dp[i][j-1]+1;
                if(dp[i][j] > dp[i-1][j]+1)
                    dp[i][j] = dp[i-1][j]+1;
            }
        }
        return dp[len1][len2];
    }
};


发现前面的还有更快的,看下了解释,因为每次更新dp[i][j]只用到dp[i-1][j],dp[i][j-1],dp[i-1][j-1],大意说可以使用O(m)或O(n)空间来完成,而不需要像上面的代码使用O(m*n)空间。




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值