高等数学---数列的极限

这篇博客探讨了数列极限在机器学习数学基础中的重要性,首先介绍了数列极限的基本概念,通过实例解释了极限的直观意义,并引用了高等数学教材中的相关定义,帮助读者理解数列极限如何表示和逼近某个确定的数值。此外,还推荐了相关学习资源。
摘要由CSDN通过智能技术生成

前言

本博客目前阶段记录的数学相关的知识,是为了学习机器学习而准备的,所以可以很明显的感觉到数学的实用性和数学的魅力。但从另一侧面来说,本博客记录的数学知识是不完整的,也是不成体系的,也没有深挖相关知识的来龙去脉,只是本人觉得机器学习中需要某些数学知识的时候,就记这些知识,够用就可以了。所以,并不适合入门。

虽然如此,我想本博客数学方面的相关内容最起码能起一个方向作用(因为当年我开始学习机器学习相关的数学基础时很茫然),让读者知道哪些数学基础是学习机器学习时非先掌握不可的,这样才能有的放矢的去查漏补缺,并学以致用。

极限

极限有两种:数列极限和函数极限,用的较多的是函数极限,数列极限相比函数极限更易理解,由数列极限到函数极限,可进行比较再理解。
本篇文章先记录数列 的极限,下一篇讲函数的极限

数列的极限

我觉得要理解极限的概念,书上的例子是不得不看的,因为极限是为了探索实际问题的精确答案产生的,如果连极限要用到哪里都不知道,学它又有什么意义?

代数学家刘徽利用圆内接正多边形为推算圆面积的方法—割圆术,就是极限思想在几何学上的应用。设有一圆,首先作内接正六边形,把它的面积记为 A1 A 1 ;再作内接正十二边形,其面积记为 A2 A 2 ;再作内接正二十四边形,其面积为 A3 A 3 ;如此下去,每次边数加倍,一般地,把内接正 62n1 6 ∗ 2 n − 1 边形的面积记为 An(nN+) A n ( n ∈ N + ) .这样就得到一系列内接正多边形的面积

A1,A2,,An,, A 1 , A 2 , … , A n , … ,

n n 越大,内接正多边形与圆的面积差别就越小。但是无论 n 取得如何大,只要 n n 取定了, A n 终究只是多边形的面积,而不是圆的面积。

因此,设想 n n 无限增大(记为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值