数列极限

一、数列
1. 数列的定义

按自然数1,2,3,…编号依次排列的一列数 x 1 , x 2 , . . . , x n , . . . . x_{1},x_{2},...,x_{n},.... x1x2...xn....称为无穷数列,简称数列

其中每个数称为数列的项, x n x_{n} xn称为通项(一般项),此数列可记为{ x n x_{n} xn},例如:2,4,8,…, 2 n 2^{n} 2n,…;{ 2 n 2^{n} 2n}

2. 数列的极限

如果对于任意给定的正数 ε \varepsilon ε(不论它多么小),总存在正整数 N N N,使得对于 n > N n >N n>N时的一切 x n x_{n} xn,不等式 ∣ x n − a ∣ < ε |x_{n} - a| < \varepsilon xna<ε 都成立,那么就称常数 a a a 是数列 x n x_{n} xn的极限,或者称数列 x n x_{n} xn收敛于 a a a,记作 lim ⁡ n → ∞ x n = a \lim_{n \to \infty }x_{n} = a limnxn=a

注意:

  1. 如果数列没有极限,就说数列是发散的。
  2. 不等式 ∣ x n − a ∣ < ε |x_{n} - a| < \varepsilon xna<ε 刻画了 x n x_{n} xn a a a的无限接近。
  3. 定义中正整数 N N N与任意给定的正数 ε \varepsilon ε有关。

在这里插入图片描述
在这里插入图片描述
例题1:
在这里插入图片描述
例题2:
在这里插入图片描述
例题3:
在这里插入图片描述

3. 收敛数列的性质
  1. 有界性
    对数列 x n x_{n} xn,若存在正数 M M M,使得一切自然数$n,恒有 ∣ x n ∣ < M |x_{n}| < M xn<M成立,则称数列 x n x_{n} xn有界,否则称为无界。
    列:数列 x n = n n + 1 x_{n} = \frac{n}{n+1} xn=n+1n 有界 x n = 2 n x_{n} = 2^{n} xn=2n 无界

定理:

  1. 收敛的数列必定有界
    在这里插入图片描述
  2. 每个收敛的数列只有一个极限
  3. 保号性
    在这里插入图片描述
  4. 收敛数列与其子数列间的关系:如果数列收敛于 a a a,那么它的任一子数列也收敛,且极限也是 a a a
  • 8
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值