LintCode-845: Greatest Common Divisor

欧几里德算法:
定理:a 和 b 两个整数的最大公约数等于b 与 a % b的最大公约数
形式化表示:假设a, b!=0, 则gcd(a, b) = gcd(b, a%b)。
证明:

  1. 设 c = gcd(a, b), 则 a = cx, b = cy,且gcd(x,y)=1
  2. 可知 a % b = a - k * b = cx - kcy = c (x - ky)
  3. 可知 c 也是a % b 的 factor (这里我们证明了c是b和a%b的公约数,下面要证明c是b和a%b的最大公约数,所以要证明y和x-ky互质)

// 下面4,5,6,7证明x - ky与y互质

  1. 假设gcd(x - ky, y) = d

  2. 则 y = nd, x - ky = md, 则 x = knd + md = (kn + m)d

  3. 我们有 a = cd(kn + m),b = cdn

  4. 可得gcd(a,b) >= cd, 又因为gcd(a, b)=c,所以d = 1

  5. 综上可得, gcd(a,b)=gcd(b,r)=gcd(b, a%b)。

注意:辗转相除法还可以用于快速求解ax+by=1 (a, b互质)方程的一组整数解

递归版:

int gcd(int a, int b) {
        int big=(a>b)? a:b;
        int small=(a<b)? a:b;
        if (small!=0) 
            return gcd(small, big%small);
        else
            return big;
    }

迭代版:

    int gcd(int a, int b) {
        int big=(a>b)? a:b;
        int small=(a<b)? a:b;
        
        while(small!=0) {
            int temp=small;
            small=big%small;
            big=temp;
        }

        return big;
    }

又看了一下,发现递归版不需要检查big, small,可以直接简写如下:

int gcd(int a, int b) {
    return (b ? gcd(b, a % b) : a);
}

因为如果a < b, 那么a%b=a, 所以gcd(b, a%b)就自动切换了大小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值