大模型到底是减少了焦虑还是放大了焦虑?
--楼兰 现在各种各样的大模型产品,你一定用过吧。互联网上各种各样的大模型视频,你一定刷到过吧。互联网上全知全能的大模型,有没有一瞬间让你觉得,拥有大模型,你和那些大神就在同一起跑线上了?
有了大模型,什么技术我不会?什么代码我写不出来?下载一个Cursor,我就是无所不能的程序员。再上手玩玩Coze,我就是天下无敌的存在。
别看这些话说得狂到无边,但是确实是我最近接触到的一部分人的心声。但是,这次,我是真的想要给这些人泼泼冷水了。别被大模型的强大给迷了眼。大模型放大了普通人的梦想,但是同时,也放大了技术人的焦虑!
一、考试的故事
最近一次偶然的机会,去参加了阿里云的大模型工程师ACP认证。经过了个把月的折腾,这次终于勉强通关了。满分100分考试,80分及格。踩着及格线通过了。
为什么会参加这次考试呢?其实是最近和一个专做考证的培训机构合作,我需要出套技术课程指导他们的学员考这个ACP认证。当时兴致勃勃的出了套技术视频,自我感觉非常好。毕竟,论讲技术,还从来没虚过。
出完视频后,就去参加了一次考试。当时参加考试的目的,还不是要拿个什么证,而是要去帮他们拿到第一手的题库。因为这个认证出来时间还不长,大家都不知道考题长什么样子。自然也不知道怎么去准备这个认证。于是,第一次毫无意外的挂了。但是这也没什么,毕竟这个证于我没什么荣誉。就当是学了一套非常好的在线课程,收获也不错。毕竟阿里官方实力出手,这可以不是互联网上那些就会捞流量的博主能比的。
这次之后,就开始全力为大家准备刷题指导了。借着AI的帮助,准备了一大堆的考题,也整理出了解析和答案。交给合作机构后,我的任务就算是完成了。
但是没想到的是,过了几个月,跟培训机构聊天,才知道,几个月时间,前前后后有几十个学员参加了考试。没想到,结果是全军覆没,没有一个考过了的!有个最接近的学员,考了79分。其他大都在70分左右。并且很多人说我们出的题库完全不对味。不但刷到的原题很少,甚至很多考题都无法理解。
于是,又回头来重新看了看之前准备的课程,是不是课程有问题。结果发现,就在几个月时间里。阿里云的这个ACP认证的课程资料都发生了很大的变化。原本是一个应用层面的课程,现在,也不可避免的出现了这些让人看着就头疼的公式。还有各种眼花缭乱的参数。内容都变了这么多了,考题能不难吗。
至于大纲里面的变化,那就更多了。说实话,这个过程着实让我有点惊讶。在此之前,一定有很多人觉得不用去管那些看都看不懂的数学公式,那些名字都听不全的专业名词,我就看看互联网上各种操作手册,各种炫技视频,也照样能玩转大模型。但是,至少从ACP的这个角度,会告诉你,大模型落地没那么简单。你要是随随便便画个画,出个视频玩玩,那也就算了。但是,如果想要把大模型用好,尤其是用在一些比较重大的企业场景,没两把刷子还真玩不来。
二、大模型真的那么简单吗?
或许你会觉得我在故弄玄虚。那么,我就带你到ACP的大纲里面去看看。比如里面有一个最大的章节,构建大模型问答系统。其实也就是互联网上各种故弄玄虚的RAG检索增强。简单来说,就是让大模型在回答一些专业领域的问题时,能够更好的参考,学习特定专业知识的一种方法。也是企业落地大模型最为重要的一种方式。互联网上对于RAG吹得各种神乎其神,在很多博主的视频里,感觉要实现了一个RAG就是天神下凡了一般。但是,在ACP的大纲里是怎么讲的呢?
你看看这些章节的标题,这哪是什么学习指导。分明就是企业中的开发手册了。而且,这个神乎其神的RAG流程,在第二章就已经完全实现了。后面全是围绕RAG的各种优化。而RAG是怎么实现的呢?大纲当中是使用的LlamaIndex框架实现的RAG流程。而全部的实现代码,长这样:
是的。 你可以看到,如果把声明组件的那些多行代码折叠成一行,再去掉那些不核心的import、print什么的,那么全部核心代码只有五行。
LlamaIndex官网的第一个上手案例,更简单粗暴。 30秒+4行代码,就可以是一个RAG的全部代码。
简单吗?确实简单。但是,看看热闹还行,在企业中能用吗?不能用! 为什么?简单玩玩,讲究的是能用,而真正技术要落地,是要好用。后面的几个章节,全是围绕RAG的各种各样的调优思路。如何对RAG的性能进行衡量?如何让RAG的回答更稳定,更靠谱?还有如何在RAG调优的过程中,合理控制成本都是ACP考察的重点。相比之下,如何实现这些功能?小到优化提示词,大到模型微调,大部分都是一些现成框架调几下方法就完事了。但是在这些简单的调方法的背后,到底干了些什么事?如何合理的调整每个超参数?如何把控每个方法的执行效果?都是必不可少的基本功。
三、大模型招聘的第一手经验
或许你又会说,这些调接口,调参数的事情,我只要稍微花花心思学学就没什么问题了嘛。 现在有AI在手,学什么东西不简单。但是,或许真实情况,会狠狠打你的脸。大模型带来的不只是便利,更有职场的大洗牌。
我们公司最近正在招聘一个AI大模型讲师,希望找个大牛来做一套精品课程。要求自然是技术要牛,也要有实际的工作经验。为此,最近我面试了一大堆的人。也算是提前了解一下AI大模型的职场是什么样子。
但是,不面不知道,一面吓一跳。当我也以为算法工程师这么高端的岗位应该各个都是天之骄子时。这帮跟大模型应该联系得最紧密的职位,在AI大模型时代,却呈现了巨大的两级分化。但是不变的是,AI大模型时代带给了他们更大的焦虑。
- 一方面,大量的老工程师无法适应大模型时代的要求。传统的算法工程师岗位,大部分的工作是以传统的机器学习、神经网络为基础的,大部分的工作也是一些数据清理、协同过滤、图像识别之列的工作。现在AI大模型导致很多行业整体下滑,导致传统算法方向的岗位也少了很多。能够在算法工程师的高端岗位站稳脚的人,或许还是人中龙凤。但是大部分的算法工程师,出来后会发现,以往以机器学习和神经网络为代表的传统算法岗位和现在的AI大模型技术之间有很大的隔阂,找工作也显得格格不入。现在这层出不穷的langchain、llamaindex、MCP什么的,完完全全跟不上。
- 另一方面,很多刚毕业的大学生也跟着大模型时代一样,重应用,轻基础。本身项目经验不是非常丰富,大部分情况下就是跟着导师或者团队做了一些莫名奇妙的项目。什么烟雾告警啊、鸟类识别啊,还有各种各样场景的智能客服啊。做了一大堆的项目,问个transformer架构,十个人里只有一两个能说明白。再拿ACP资料当中那些很“基础”的业务场景一问,比如,如何衡量RAG的质量啊,如何评估模型微调的效果啊,到目前为止,全军覆没。
当然,这也可能是我们招聘的讲师岗位和做项目的技术人员比起来有点特殊。会说,在某种程度上,比会做更重要。也有可能是我们招聘的岗位没有那么大气,所以很难接触到那些高端的行业人士。但是,神仙打架那是神话,人间冷暖才是生活,不是吗?
四、最后,活得明白点
必不可少的谈到了焦虑。虽然生活在不断前进,也有大模型这样的技术带我们不断开启新的方向。但是,焦虑却突然的成为了时代的主题。大模型给很多小白们带来了前所未有的便利,但是同时也给另外一部分技术人带来了前所未有的焦虑。就好像我也在坚守Java,但是不得不承认,未来最主流的技术,只有一个,那就是AI。Java、Python、C#什么编程语言,对大模型来说,都是一句提示词。
如何调整焦虑?最近看到一篇分享如何读书的文章,里面提到了一个好玩的读书九字。我觉得很好玩,记录下来,安慰安慰未来的我把。
- 对时间的态度:不着急。换种说法,对学习的态度,不着急。对任何技术或者是新生事务,不要着急表态学了没用,更不要急着显摆我已经学会了。你只有投入了足够的时间和精力,才会显出学习的价值。
- 对结果的态度:不害怕。AI大模型时代,有更多的想法就有更多的可能。有了大模型的加持,没有什么技术是啃不动的。
- 对他人评价的态度:不要脸。给不完美以容忍。没人能读尽天下书,也没人能学尽天下的技术。但是,只要你学了,你就超过了很多人。只要你动了,就有更多的机会。
最后,江湖凶险,多学习、磨好剑,江湖见。