决策树-ID3

代码

import numpy as np
data = np.array([
    ['老年', '短发', '平底', '深色', '男性'],
    ['老年', '短发', '平底', '浅色', '男性'],
    ['老年', '中发', '平底', '花色', '女性'],
    ['老年', '长发', '高跟', '浅色', '女性'],
    ['老年', '短发', '平底', '深色', '男性'],
    ['中年', '短发', '平底', '浅色', '男性'],
    ['中年', '短发', '平底', '浅色', '男性'],
    ['中年', '长发', '高跟', '花色', '女性'],
    ['中年', '中发', '高跟', '深色', '女性'],
    ['中年', '中发', '平底', '深色', '男性'],
    ['青年', '长发', '高跟', '浅色', '女性'],
    ['青年', '短发', '平底', '浅色', '女性'],
    ['青年', '长发', '平底', '深色', '男性'],
    ['青年', '短发', '平底', '花色', '男性'],
    ['青年', '中发', '高跟', '深色', '女性']
])
columns = ['年龄', '发长', '鞋跟', '服装', '性别']

# 计算信息熵
def entropy(labels):
    unique_labels, label_counts = np.unique(labels, return_counts=True)
    probabilities = label_counts / len(labels)
    return -np.sum(probabilities * np.log2(probabilities))

# 多数表决函数
def majority_vote(labels):
    unique_values, counts = np.unique(labels, return_counts=True)
    return unique_values[np.argmax(counts)]

# 选择最佳特征
def choose_best_feature(data):
    base_entropy = entropy(data[:, -1])  # 计算整个数据集的原始熵
    best_info_gain = 0.0
    best_column = -1

    # 遍历每个特征,计算信息增益
    for index in range(data.shape[1] - 1):
        unique_values = np.unique(data[:, index])
        new_entropy = 0.0

        # 计算每个特征值导致的信息熵
        for value in unique_values:
            subset = data[data[:, index] == value]
            prob = len(subset) / len(data)
            new_entropy += prob * entropy(subset[:, -1])

        info_gain = base_entropy - new_entropy
        if info_gain > best_info_gain:
            best_info_gain = info_gain
            best_column = index

    return best_column

# 切割数据集
def split_data(data, index, value):
    """根据特征和特征值切割数据集."""
    subset = data[data[:, index] == value]
    return np.delete(subset, index, axis=1)

# 递归构建决策树
def create_decision_tree(data, feature_names):
    """递归构建决策树,选择最佳分割特征."""
    # 如果数据集中所有元素属于同一类别,则返回该类别
    if len(np.unique(data[:, -1])) == 1:
        return data[0, -1]

    # 如果没有更多的特征可用来进一步划分数据,应用多数表决
    if len(data[0]) == 1:
        return majority_vote(data[:, -1])

    # 选择最佳特征并继续分割
    best_feature_index = choose_best_feature(data)
    best_feature = feature_names[best_feature_index]
    tree = {best_feature: {}}

    # 对每个特征值递归构建子树
    feature_values = np.unique(data[:, best_feature_index])
    for value in feature_values:
        sub_data = split_data(data, best_feature_index, value)
        sub_features = feature_names[:best_feature_index] + feature_names[best_feature_index + 1:]
        tree[best_feature][value] = create_decision_tree(sub_data, sub_features)

    return tree

# 打印决策树
def print_decision_tree(tree, indent=''):
    for key, val in tree.items():
        if isinstance(val, dict):
            print(indent + str(key) + ':')
            print_decision_tree(val, indent + '  ')
        else:
            print(indent + '  ' + str(key) + ': ' + str(val))

# 构建并打印决策树
decision_tree = create_decision_tree(data, columns)
print_decision_tree(decision_tree)

结果

改进

1.可以使用如graphviz来生成决策树的图形可视化表示

2..查阅资料得知,当数据集够大时需要采用

剪枝(Pruning)

剪枝可以帮助减少决策树的复杂性,避免过拟合。通常有两种主要的剪枝技术:

  • 预剪枝(Pre-pruning):在构建决策树的过程中提前停止树的生长。可以通过设置一个最大深度、要求节点中的最小样本数量或信息增益的最小值来实现。

  • 后剪枝(Post-pruning):先构建决策树,然后删除那些提供较小增益的分支。可以使用交叉验证来测试每次剪枝的效果,保留表现最佳的配置。

    但是这个里面,没想懂剪枝在本题的作用,因为本题就15个样本,没必要限制树的深度,剪枝效果不大

3.预测功能

 # 预测函数
 def predict(tree, sample):
     if not isinstance(tree, dict):
         return tree
     root_node = next(iter(tree))
     feature_value = sample.get(root_node)
     if feature_value in tree[root_node]:
         return predict(tree[root_node][feature_value], sample)
     return None

4.用其他算法来分类,如C4.5算法

C4.5算法是用于生成决策树的一种经典算法,是ID3算法的一种延伸和优化。

C4.5算法对ID3算法进行了改进 ,改进点主要有:

  1. 用信息增益率来选择划分特征,克服了用信息增益选择的不足,但信息增益率对可取值数目较少的属性有所偏好

  2. 能够处理离散型和连续型的属性类型,即将连续型的属性进行离散化处理;

  3. 能够处理具有缺失属性值的训练数据;

  4. 在构造树的过程中进行剪枝;

计算步骤

  1. 计算信息增益:首先,和ID3一样,计算每个属性的信息增益。

  2. 计算分割信息:对于每个属性,计算其分割信息,这是对属性可能取值的总体信息量的度量。

  3. 计算信息增益率:信息增益率是信息增益和分割信息的比值。选择信息增益率最高的属性作为分割节点。

数据集中的特征如“服装”和“发长”在不同分类下的分布相对均匀,使用ID3可能会优先选择这些特征,因为它们可能带来更高的信息增益。而C4.5在计算信息增益率时,会考虑到分割信息,可能不会选择这些特征,尤其是当这些特征的分割信息较高时。

本题中用C4.5算法可能时先年龄后服装,而不是先服装后年龄。

手动计算方法

  • 8
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Loop_kc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值