21、欧盟可持续金融行动与分类体系解析

欧盟可持续金融行动与分类体系解析

1. 可持续金融行动计划的主要行动

可持续金融行动计划包含多个关键行动,旨在推动金融领域的可持续发展,主要分为三个目标下的系列行动。

1.1 目标一:将可持续性纳入金融体系
  • 行动 4:将可持续性纳入金融建议
    欧盟委员会通过规则,将可持续金融融入《金融工具市场指令 II》(MiFID II)和《保险分销指令》(IDD)框架。这些规则明确了金融顾问向客户提供投资相关社会和环境风险及机会建议的职责,确保金融公司在程序中纳入可持续性考量。例如,在适用性测试中整合可持续性因素,评估金融服务、工具或产品是否适合特定客户;同时将可持续性风险和因素评估纳入投资公司的组织要求、风险管理和产品治理程序。
  • 行动 5:制定可持续性基准
    创建了两种低碳基准,即欧盟气候转型基准(EU Climate Transition Benchmark)和欧盟巴黎协定对齐基准(EU Paris - aligned Benchmark)。这是两个自愿性标签,适用于符合特定条件的基准。欧盟气候转型基准要求投资组合的温室气体强度比可投资范围低 30%,而欧盟巴黎协定对齐基准要求低 50%,且需排除从化石燃料获得大量收入的公司。两者都需使用 1.5°C 参考情景,并目标是投资组合的温室气体排放量每年至少减少 7%。
基准类型 温室气体强度要求 对化石燃料公司要求 参考情景及减排目标
【故障诊断】【pytorch】基于CNN-LSTM故障分类的轴承故障诊断研究[西储大学数据](Python代码实现)内容概要:本文介绍了基于CNN-LSTM神经网络模型的轴承故障分类方法,利用PyTorch框架实现,采用西储大学(Case Western Reserve University)公开的轴承故障数据集进行实验验证。该方法结合卷积神经网络(CNN)强大的特征提取能力和长短期记忆网络(LSTM)对时序数据的建模优势,实现对轴承不同故障类型和严重程度的高精度分类。文中详细阐述了数据预处理、模型构建、训练流程及结果分析过程,并提供了完整的Python代码实现,属于典型的工业设备故障诊断领域深度学习应用研究。; 适合人群:具备Python编程基础和深度学习基础知识的高校学生、科研人员及工业界从事设备状态监测故障诊断的工程师,尤其适合正在开展相关课题研究或希望复现EI级别论文成果的研究者。; 使用场景及目标:① 学习如何使用PyTorch搭建CNN-LSTM混合模型进行时间序列分类;② 掌握轴承振动信号的预处理特征学习方法;③ 复现并改进基于公开数据集的故障诊断模型,用于学术论文撰写或实际工业场景验证; 阅读建议:建议读者结合提供的代码逐行理解模型实现细节,重点关注数据加载、滑动窗口处理、网络结构设计及训练策略部分,鼓励在原有基础上尝试不同的网络结构或优化算法以提升分类性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值