基于MPC 模型预测控制的轨迹跟随,横向控制模型,车道保持,simulink模型

本文探讨了基于MPC模型的自动驾驶中,轨迹跟随和车道保持技术的实现,利用二自由度动力学模型自定义参数,通过Simulink模拟测试验证其有效性。着重强调了优化算法以提高鲁棒性和适应性的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于MPC 模型预测控制的轨迹跟随,横向控制模型,车道保持,simulink模型
采用二自由度车辆动力学模型,可以自定义车辆参数,自定义目标轨迹,图中为单移线目标轨迹与实际轨迹偏差


基于MPC模型预测控制的轨迹跟随技术在自动驾驶领域中具有广泛的应用前景。其中,横向控制模型是关键的一环,它可以帮助车辆准确跟随预定轨迹并及时调整车辆方向,确保行驶路线的安全性和稳定性。同时,车道保持功能也是自动驾驶系统中必不可少的一项功能,它可以帮助车辆在行驶过程中保持在正确的车道上,避免出现偏离车道或越线的情况。

在实现轨迹跟随功能时,我们采用了二自由度车辆动力学模型,并对车辆参数进行了自定义。这样可以确保模型更加贴合实际情况,提高跟随效果的准确性和精度。同时,我们还可以自定义目标轨迹,根据不同的实际路况进行灵活调整。

在进行轨迹跟随过程中,我们发现实际轨迹与预定轨迹之间存在一定的偏差,这可能是由于路面状况、车辆参数等因素所致。为了解决这个问题,我们需要对轨迹跟随算法进行优化,提高算法的鲁棒性和适应性,以应对各种复杂的实际路况。

为了验证我们的轨迹跟随技术的有效性,我们采用了Simulink模型进行了模拟测试。经过多次仿真实验,我们发现,基于MPC模型预测控制的轨迹跟随技术可以较好地实现车辆的自动驾驶功能,实现了预定轨迹的准确跟随和车道保持功能,同时也具有一定的鲁棒性和适应性。

综上所述,基于MPC模型预测控制的轨迹跟随技术在自动驾驶领域中具有广泛的应用前景和重要意义。在实际应用中,我们还需要对算法进行不断优化和改进,以提高其效率和精度,进一步推动自动驾驶技术的发展。

相关代码,程序地址:http://lanzouw.top/672075510043.html
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值