基于MPC 模型预测控制的轨迹跟随,横向控制模型,车道保持,simulink模型
采用二自由度车辆动力学模型,可以自定义车辆参数,自定义目标轨迹,图中为单移线目标轨迹与实际轨迹偏差
基于MPC模型预测控制的轨迹跟随技术在自动驾驶领域中具有广泛的应用前景。其中,横向控制模型是关键的一环,它可以帮助车辆准确跟随预定轨迹并及时调整车辆方向,确保行驶路线的安全性和稳定性。同时,车道保持功能也是自动驾驶系统中必不可少的一项功能,它可以帮助车辆在行驶过程中保持在正确的车道上,避免出现偏离车道或越线的情况。
在实现轨迹跟随功能时,我们采用了二自由度车辆动力学模型,并对车辆参数进行了自定义。这样可以确保模型更加贴合实际情况,提高跟随效果的准确性和精度。同时,我们还可以自定义目标轨迹,根据不同的实际路况进行灵活调整。
在进行轨迹跟随过程中,我们发现实际轨迹与预定轨迹之间存在一定的偏差,这可能是由于路面状况、车辆参数等因素所致。为了解决这个问题,我们需要对轨迹跟随算法进行优化,提高算法的鲁棒性和适应性,以应对各种复杂的实际路况。
为了验证我们的轨迹跟随技术的有效性,我们采用了Simulink模型进行了模拟测试。经过多次仿真实验,我们发现,基于MPC模型预测控制的轨迹跟随技术可以较好地实现车辆的自动驾驶功能,实现了预定轨迹的准确跟随和车道保持功能,同时也具有一定的鲁棒性和适应性。
综上所述,基于MPC模型预测控制的轨迹跟随技术在自动驾驶领域中具有广泛的应用前景和重要意义。在实际应用中,我们还需要对算法进行不断优化和改进,以提高其效率和精度,进一步推动自动驾驶技术的发展。
相关代码,程序地址:http://lanzouw.top/672075510043.html