老铁们,今天我们来聊聊如何使用Cross Encoder进行重排序(reranking)操作。我们会从一个基本的检索器出发,然后用Hugging Face提供的Cross Encoder模型来实现重排序。说白了,这个过程就是通过引入Cross Encoder来提高检索的准确性。在这里,我会用到Hugging Face的模型,比如BAAI/bge-reranker-base,并在SageMaker中部署。
技术背景介绍
在信息检索系统中,重排序是提高检索精度的重要技术手段。Cross Encoder可以与嵌入结合使用,作为一种强大的重排序机制。Hugging Face的Cross-Encoders文档对此有详细说明。
原理深度解析
Cross Encoder的工作原理是对文本对进行编码,然后通过模型计算出相关性得分。相比于单独使用嵌入,Cross Encoder考虑了句子间的关系,因此能提供更精准的排序结果。
实战代码演示
设置基础向量存储检索器
首先,我们需要初始化一个简单的向量存储检索器,并存储文档。例如,这里我们用到了2023年的国情咨文作为示例数据。
#!pip install faiss sentence_transformers
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
documents = TextLoader("../../how_to/state_of_the_union.txt").load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
embeddingsModel = HuggingFaceEmbeddings(
model_name="sentence-transformers/msmarco-distilbert-dot-v5"
)
retriever = FAISS.from_documents(texts, embeddingsModel).as_retriever(
search_kwargs={
"k":