分布式缓存面试题+SpringCache解决方案
分布式缓存必考题之缓存击穿+解决方案
缓存击穿
- 缓存击穿(某个热点Key缓存失效)
- 缓存中没有数据但数据库中有数据,加入是热点数据,那么key在缓存过期的一刻,有大量的请求,这些请求都会击穿到DB,造成瞬间DB请求量大、压力增大。
- 和缓存雪崩的区别在于这里针对某一key缓存,后者是很多key
预防
SpringCache解决方案
- 缓存同步的sync
- sync 可以指示底层将缓存锁住,使只有⼀个线程可以进⼊计算,⽽其他线程堵塞,直到返回结果更新到缓存中
@Cacheable(value = {"product"},key = "#root.args[0]", cacheManager = "customCacheManager", sync=true)
分布式缓存必考题之缓存雪崩+解决方案
缓存雪崩(多个热点key过期)
- 缓存雪崩
- ⼤量的key设置了相同的过期时间,导致在缓存在同⼀时刻全部失效,造成瞬时DB请求量⼤、压⼒骤增,引起雪崩
- 预防
- 存数据的过期时间设置随机,防⽌同⼀时间⼤量数据过期现象发⽣
- 设置热点数据永远不过期,定时任务定时更新
- SpringCache解决⽅案
- 设置差别的过期时间
- 比如CacheManager配置多个过期时间维度
- 配置⽂件 time-to-live 配置
cache:
type: redis
redis:
time-to-live: 3600000
use-key-prefix: true
key-prefix: XD_CACHE
cache-null-values: true
分布式缓存必考题之缓存穿透+解决方案
缓存穿透(查询不存在的数据)
- 缓存穿透
- 查询⼀个不存在的数据,由于缓存是不命中的,并且出于容错考虑,如发起为id为“-1”不存在的数据
- 如果从存储层查不到数据则不写⼊缓存这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义。存在⼤量查询不存在的数据,可能DB就挂掉了,这也是⿊客利⽤不存在的key频繁攻击应⽤的⼀种⽅式。
- 预防
- 接⼝层增加校验,数据合理性校验
- 缓存取不到的数据,在数据库中也没有取到,这时也可以将key-value对写为key-null,设置短点的过期时间,防⽌同个key被⼀直攻击
- SpringCache解决⽅案
- 空结果也缓存,默认不配置condition或者unless就⾏
cache:
type: redis
redis:
time-to-live: 3600000
use-key-prefix: true
key-prefix: XD_CACHE
cache-null-values: true