Kafka10——自定义Interceptor和流式计算

本文介绍Kafka中的Producer拦截器原理及其应用案例,包括定制化消息处理逻辑及统计消息发送情况。同时,探讨Kafka Streams的功能特性,通过案例展示如何利用Kafka Streams进行数据清洗。
摘要由CSDN通过智能技术生成

一、拦截器原理
 Producer 拦截器(interceptor)是 Kafka 在 0.10 版本被引入的,主要用于实现 clients 端的定制化控制逻辑
 对于 producer 而言,interceptor 使得用户在消息发送前以及 producer 回调逻辑前有机会对消息做一些定制化需求,比如修改消息等。同时,producer 允许用户指定多个 interceptor 按序作用于同一条消息从而形成一个拦截链(interceptor chain)。Intercetpor 的实现接口是 org.apache.kafka.clients.producer.ProducerInterceptor,其定义的方法包括如下:

public interface ProducerInterceptor<K, V> extends Configurable {
    //Producer 确保在消息被序列化以及计算分区前调用该方法
    public ProducerRecord<K, V> onSend(ProducerRecord<K, V> record);
	//在消息从 RecordAccumulator 成功发送到 Kafka Broker 之后,或者在发送过程中失败时调用
    public void onAcknowledgement(RecordMetadata metadata, Exception exception);
    //关闭 interceptor,主要用于执行一些资源清理工作
    public void close();
}

 其父接口 Configurable 的定义如下:

public interface Configurable {
	// 获取配置信息和初始化数据时调用
    void configure(Map<String, ?> configs);
}

 这四个方法的调用时机和作用如下:
 1、configure()
  获取配置信息和初始化数据时调用
 2、onSend()
  该方法的调用被封装进 KafkaProducer.send 方法中,即它运行在用户主线程中。KafkaProducer.send()的代码如下:

@Override
public Future<RecordMetadata> send(ProducerRecord<K, V> record, Callback callback) {
    // intercept the record, which can be potentially modified; this method does not throw exceptions
    ProducerRecord<K, V> interceptedRecord = this.interceptors == null ? record : this.interceptors.onSend(record);
    return doSend(interceptedRecord, callback);
}

  onSend()的源码如下:

public ProducerRecord<K, V> onSend(ProducerRecord<K, V> record) {
    ProducerRecord<K, V> interceptRecord = record;
    for (ProducerInterceptor<K, V> interceptor : this.interceptors) {
        try {
            interceptRecord = interceptor.onSend(interceptRecord);
        } catch (Exception e) {
            // do not propagate interceptor exception, log and continue calling other interceptors
            // be careful not to throw exception from here
            if (record != null)
                log.warn("Error executing interceptor onSend callback for topic: {}, partition: {}", record.topic(), record.partition(), e);
            else
                log.warn("Error executing interceptor onSend callback", e);
        }
    }
    return interceptRecord;
}

  Producer 确保在消息被序列化以及计算分区前调用拦截器的onSend()方法。用户可以在该方法中对消息做任何操作,但最好保证不要修改消息所属的 topic 和分区,否则会影响目标分区的计算。
 3、onAcknowledgement()
  该方法会在消息从 RecordAccumulator 成功发送到 Kafka Broker 之后,或者在发送过程中失败时调用,并且通常都是在 producer 回调逻辑触发之前。onAcknowledgement 运行在 producer 的 IO 线程中,因此不要在该方法中放入很重的逻辑,否则会拖慢 producer 的消息发送效率。
 4、close()
  关闭 interceptor,主要用于执行一些资源清理工作。
  如前所述,interceptor 可能被运行在多个线程中,因此在具体实现时用户需要自行确保线程安全。另外,倘若指定了多个 interceptor,则 producer 将按照指定顺序调用它们,调用这些 intercepor 出现异常时 producer 仅仅是捕获这些抛出的异常并将错误日志记录到 warn 级别的log文件中而非继续向上抛出,这在使用过程中要特别留意。

二、拦截器案例
 实现一个简单的双 interceptor 组成的拦截链。第一个 interceptor 会在消息发送前将时间戳信息加到消息 value 的最前部;第二个 interceptor 会在消息发送后更新成功发送消息数或失败发送消息数。
  ①时间Interceptor

import org.apache.kafka.clients.producer.ProducerInterceptor;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;

import java.util.Map;

public class TimeInterceptor implements ProducerInterceptor<String, String> {

    @Override
    public void configure(Map<String, ?> configs) {

    }

    @Override
    public ProducerRecord<String, String> onSend(ProducerRecord<String, String> record) {
        // 创建一个新的 record,把时间戳写入消息体的最前部
        return new ProducerRecord(record.topic(), record.partition(), record.timestamp(), record.key(),
                System.currentTimeMillis() + "," + record.value().toString());
    }

    @Override
    public void onAcknowledgement(RecordMetadata metadata, Exception exception) {

    }

    @Override
    public void close() {

    }
}

  ②统计发送消息成功和发送失败消息数,并在 producer 关闭时打印这两个计数器

import org.apache.kafka.clients.producer.ProducerInterceptor;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;

import java.util.Map;

public class CounterInterceptor implements ProducerInterceptor<String, String> {

    private int errorCounter = 0;
    private int successCounter = 0;

    @Override
    public void configure(Map<String, ?> configs) {

    }

    @Override
    public ProducerRecord<String, String> onSend(ProducerRecord<String, String> record) {
        return record;
    }

    @Override
    public void onAcknowledgement(RecordMetadata metadata, Exception exception) {
        // 统计成功和失败的次数
        if (exception == null) {
            successCounter++;
        } else {
            errorCounter++;
        }
    }

    @Override
    public void close() {
        // 保存结果
        System.out.println("Successful sent: " + successCounter);
        System.out.println("Failed sent: " + errorCounter);
    }
}

  ③producer 主程序

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.util.ArrayList;
import java.util.List;
import java.util.Properties;

public class InterceptorProducer {

    public static void main(String[] args) throws Exception {
        // 1 设置配置信息
        Properties props = new Properties();
        props.put("bootstrap.servers", "hadoop102:9092");
        props.put("acks", "all");
        props.put("retries", 3);
        props.put("batch.size", 16384);
        props.put("linger.ms", 1);
        props.put("buffer.memory", 33554432);
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        // 2 构建拦截链
        List<String> interceptors = new ArrayList<>();
        interceptors.add("com.boom.toolbox.kafka.interceptor.TimeInterceptor");
        interceptors.add("com.boom.toolbox.kafka.interceptor.CounterInterceptor");
        props.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG, interceptors);
        String topic = "first";
        Producer<String, String> producer = new KafkaProducer<>(props);
        // 3 发送消息
        for (int i = 0; i < 10; i++) {
            ProducerRecord<String, String> record = new ProducerRecord<>(topic, "message" + i);
            producer.send(record);
        }
        // 4 一定要关闭 producer,这样才会调用 interceptor 的 close 方法
        producer.close();
    }
}

三、Kafka 流式计算
 Kafka Streams——Apache Kafka开源项目的一个组成部分,是一个功能强大,易于使用的库。用于在Kafka上构建高可用、分布式、可拓展、容错的应用程序。
 1、Kafka Streams特点:
  ①功能强大:高扩展性,弹性,容错
  ②轻量级:无需专门的集群,仅是一个库,而不是框架
  ③完全集成:100%的Kafka 0.10.0 版本兼容,易于集成到现有的应用程序
  ④实时性:毫秒级延迟、并非微批处理 、窗口允许乱序数据、允许迟到数据
 2、为什么要有Kafka Stream
  当前已经有非常多的流式处理系统,最知名且应用最多的开源流式处理系统有Spark Streaming和Apache Storm。Apache Storm发展多年,应用广泛,提供记录级别的处理能力,当前也支持SQL on Stream。而Spark Streaming基于Apache Spark,可以非常方便的与图计算、SQL处理等集成,功能强大,对于熟悉其它Spark应用开发的用户而言使用门槛低。另外,目前主流的Hadoop发行版,如Cloudera和Hortonworks,都集成了Apache Storm和Apache Spark,使得部署更容易。
  既然Apache Spark与Apache Storm拥用如此多的优势,那为何还需要Kafka Stream呢?主要有如下原因:
  ①Spark和Storm都是流式处理框架,而Kafka Stream提供的是一个基于Kafka的流式处理类库。框架要求开发者按照特定的方式去开发逻辑部分,供框架调用。开发者很难了解框架的具体运行方式,从而使得调试成本高,并且使用受限。而Kafka Stream作为流式处理类库,直接提供具体的类给开发者调用,整个应用的运行方式主要由开发者控制,方便使用和调试。
  ②虽然Cloudera与Hortonworks方便了Storm和Spark的部署,但是这些框架的部署仍然相对复杂。而Kafka Stream作为类库,可以非常方便的嵌入应用程序中,它对应用的打包和部署基本没有任何要求。
  ③就流式处理系统而言,基本都支持Kafka作为数据源。例如Storm具有专门的kafka-spout,而Spark也提供专门的spark-streaming-kafka模块。事实上,Kafka基本上是主流的流式处理系统的标准数据源。换言之,大部分流式系统中都已部署了Kafka,此时使用Kafka Stream的成本非常低。
  ④使用Storm或Spark Streaming时,需要为框架本身的进程预留资源,如Storm的supervisor和Spark on YARN的node manager。即使对于应用实例而言,框架本身也会占用部分资源,如Spark Streaming需要为shuffle和storage预留内存。但是Kafka作为类库不占用系统资源。
  ⑤由于Kafka本身提供数据持久化,因此Kafka Stream提供滚动部署和滚动升级以及重新计算的能力。
  ⑥由于Kafka Consumer Rebalance机制,Kafka Stream可以在线动态调整并行度。

 3、Kafka Stream数据清洗案例
  需求:实时处理单词带有”>>>”前缀的内容。例如输入”atguigu>>>ximenqing”,最终处理成“ximenqing”
在这里插入图片描述
  引入依赖:以下代码仅供参考,跟依赖的kafka-streams的版本有关

compile 'org.apache.kafka:kafka-streams:3.0.0'

  构建Kafka Streams:

public class BoomKafkaApplication {
    public static void main(String[] args) {
        // 定义输入的topic
        String from = "first";
        // 定义输出的topic
        String to = "second";
        // 设置参数
        Properties settings = new Properties();
        settings.put(StreamsConfig.APPLICATION_ID_CONFIG, "logFilter");
        settings.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092");
        StreamsConfig config = new StreamsConfig(settings);
        
        // 构建拓扑
        Topology topology = new Topology();
        topology.addSource("SOURCE", from)
                .addProcessor("PROCESS", new ProcessorSupplier<byte[], byte[]>() {
                    @Override
                    public Processor<byte[], byte[]> get() {
                        // 自定义分析处理
                        return new LogProcessor();
                    }
                }, "SOURCE")
                .addSink("SINK", to, "PROCESS");

        // 创建kafka stream
        KafkaStreams streams = new KafkaStreams(topology, config);
        streams.start();
    }
}

  自定义分析处理器LogProcessor:

public class LogProcessor implements Processor<byte[], byte[]> {

    private ProcessorContext context;

    @Override
    public void init(ProcessorContext context) {
        this.context = context;
    }

    @Override
    public void process(byte[] key, byte[] value) {
        String input = new String(value);
        // 如果包含“>>>”则只保留该标记后面的内容
        if (input.contains(">>>")) {
            input = input.split(">>>")[1].trim();
            // 输出到下一个topic
            context.forward("logProcessor".getBytes(), input.getBytes());
        } else {
            context.forward("logProcessor".getBytes(), input.getBytes());
        }
    }

    @Override
    public void close() {

    }
}

 从效果上来看,Kafka Streams和自定义interceptor基本上等效,但Kafka Streams的性能要高很多。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值