Bayesian Computation with R (Jim Albert) 学习笔记I

本文介绍了贝叶斯统计的基本思想,强调了先验分布和后验概率的概念,并通过一个ESP测试的实例,展示了如何使用R语言的LearnBayes包进行贝叶斯计算,分析超感觉认知力的可信度。
摘要由CSDN通过智能技术生成

1 什么是贝叶斯思想?

贝叶斯方法在最近得到非常广泛的应用,是计算统计领域不可或缺的重要部分。其在研究一个问题时的大致框架是,在得到数据之前人们就对感兴趣的参数有个主观信念, 或者说认为服从某个先验分布(Prior Distribution)。这个是和经典统计频率派最大的不同之处。在观察到数据后,通过计算后验分布来更新对这个参数的信念。 然后在总结后验概率分布的基础上进行统计推断。

2 贝叶斯定理与逆概率

首先贝叶斯定理告诉我们:

贝叶斯定理

贝叶方法就是要通过观察数据去估计模型的参数及其对应的后验概率:

后验概率

直观的表述就是:后验概率=先验概率×似然

所以说贝叶斯的思想是当我看到了某个数据,问的问题是导致我看到这样的数据的概率(后验概率)是多少?因为可以有不同的参数, 可以导致我看到这个的数据,不同的参数给出的后验概率不同。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值