SMCQL 、 ObliVM 与 conclave 多方安全计算框架调研

本文介绍了多个用于安全数据处理的多方计算(MPC)框架,包括SMCQL、ObliVM、GraphSC、Conclave、MPyC和谷歌PSI等,涵盖了从SQL安全查询到并行图计算,再到隐私保护的大数据处理等多个方面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多方安全计算集合https://github.com/rdragos/awesome-mpc

1、SMCQL

SMCQL  将SQL语句转换为ObliVM程序,以进行安全的查询。

相关介绍:

https://inst.eecs.berkeley.edu/~cs294-163/fa19/slides/SMCQL.pdf

代码仓库:https://github.com/smcql/smcql/

论文:http://www.vldb.org/pvldb/vol10/p673-rogers.pdf

使用技术,目前看来比较适合我想要的技术栈,后续看能否在此基础上进行扩充。

  • PostgreSQL 9.5+
  • Apache Calcite 1.8+
  • Apache Maven 3+
  • Oracle Java 8+
  • JavaCC 5.0+
  • Python 2.7+

 

 

2、ObliVM

ObliVM是一种隐私保护的计算框架,它允许一个或多个组织执行安全的数据分析而不会泄露其私有数据。使用不经意传输(Oblivious Transfer)

官网:http://oblivm.com/index.html

 

GraphSC是并行安全计算框架,支持类似于GraphLab的图并行编程抽象。 GraphSC适用于多核和基于群集的计算体系结构。

https://github.com/kartik1507/GraphSC

 

 

 

3、conclave

conclave 该框架允许用户以熟悉的前端语言定义数据分析工作流,然后在多个数据存储和处理后端(包括支持安全的多方计算的隐私保护后端服务)上执行它们,当前使用python和spark作为明文计算的后端引擎,使用Sharemind [12] and Obliv-C [68] 作为MPC计算后端引擎 ,使用 混乱电路(Garbled Circuit)

代码仓库:https://github.com/multiparty/conclave

论文:https://arxiv.org/pdf/1902.06288.pdf

目前看来能适配大数据引擎

 

 

4、mpyc

 

 

MPyC支持安全的m方计算,可容忍最多t个被动腐败方的不诚实少数,其中m≥1和0≤t≤(m-1)/ 2。基础协议基于有限域上的阈值秘密共享(使用Shamir的阈值方案以及伪随机秘密共享)。

VIFF –> TUeVIFF –> MPyC

代码仓库:https://github.com/lschoe/mpyc

相关文章:Verifiable MPC from blockchain Solving the World’s Billionaires’ problem (基于区块链作可验证mpc)https://media.voog.com/0000/0042/1115/files/Verifiable%20MPC%20from%20blockchain.pdf

 

主页:https://www.win.tue.nl/~berry/mpyc/

 

5、谷歌psi

代码仓库:https://github.com/Google/private-join-and-compute

tensorflow扩展https://github.com/tf-encrypted/tf-pjc

 

6、mpc-sok 多种mpc框架的docker容器

代码仓库 :https://github.com/MPC-SoK/frameworks

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值