介绍及代码示例
TF-Encrypted是在2018年3月开源的基于TensorFlow的多方计算框架。主要参与组织有DropoutLabs, Openmined, Alibaba。
代码地址:https://github.com/tf-encrypted/tf-encrypted
TF-Encrypted默认使用的pond协议(类似spdz的mpc协议),还支持SecureNN, ABY3协议。本文主要分析pond协议的执行。
输入方可以有多方,但是pond协议必须至少有3方参与计算。其中S0和S1进行数据处理和计算,S2用来生成密钥。数据从输入方进行加密,然后有计算方进行计算,最后由数据结果接收方进行解密得到最终结果。由此可见,pond协议其实是一个3PC协议。

使用场景
可参考alibaba对于TF-Encrypted介绍的“Collaborative fraud detection”以及示例代码
https://alibaba-gemini-lab.github.io/docs/blog/tfe/
其中,Alice (银行)提供credit card bills, Bob (政府)提供tax information联合训练模型。
多方计算配置示例
配置文件config.json:
{
"alice": "192.168.1.57:4440",
"bob": "192.168.1.24:4440",
"crypto-producer": "192.168.1.17:4440"
}
协议offline阶段
- 编码阶段,将tensor编码,结果为scaled Integer类型的tensor。
- 数据封装,将数据封装到PondPrivateTensor,其关键属性share0,share1持有部分Tensor的数据(share0或者share1 = random(), share1 + share0 = tensor)。
协议online阶段
输入数据处理
- 使用TensorFlow的能力,在不同设备上执行相应代码。
with tf.device(player.device_name):
根据配置文件生成的device_name
alice.device_name = '/job:tfe/replica:0/task:0/cpu:0'
bob.device_name = '/job:tfe/replica:0/task:1/cpu:0'
crypto-producer.device_name = '/job:tfe/replica:0/task:2/cpu:0'
- 将多方数据进行聚合,share0 = concat(share0,share0’), share1 = concat(share1,share’)
x_train = tfe.concat([x_train_0, x_train_1], axis=1)
核心代码如下,其中factory即为NativeFactory,是对TensorFlow的封装。
def _concat_private(
prot: Pond, xs: List[PondPrivateTensor], axis,
) -> PondPrivateTensor:
factory = xs[0].backing_dtype
is_scaled = xs[0].is_scaled
xs0, xs1 = zip(*(x.unwrapped for x in xs))
with tf.name_scope("concat"):
with tf.device(prot.server_0.device_name):
x0_concat = factory.concat(xs0, axis=axis)
with tf.device(prot.server_1.device_name):
x1_concat = factory.concat(xs1, axis=axis)
return PondPrivateTensor(prot, x0_concat, x1_concat, is_scaled)
加法运算
加运算操作即可
乘法运算
使用Beaver的乘法三元组协议
- random sharings [a0],[a1] and [a] = [a0] + [a1]
- Additively hide [x] and [y] with appropriately sized [a] and [b]
- Open ([alpha] = [x] - [a]) and ([beta] = [y] - [b]), and ([a * b] = [ab0] + [ab1])
- Return [z] = alpha * beta + alpha * [b] + [a] * beta + [a] * [b]
推理过程:
z = x * y = z0 + z1
x * y = (x0 + x1)*(y0 + y1)
= (x - a + a)*(y - b + b)
= (alpha + a)(beta + b)
= alpha * beta + alpha * b + a * beta + a * b
= alpha * beta + alpha * (b0 + b1) + (a0 + a1) * beta + (ab0 + ab1)
= (ab0 + a0 * beta + alpha * b0 + alpha * beta) +
(ab1 + a1 * beta + alpha * b1)
= z0 + z1
核心代码
def mask(self, backing_dtype, shape):
with tf.name_scope("triple-generation"):
with tf.device(self.producer.device_name):
a0 = backing_dtype.sample_uniform(shape)
a1 = backing_dtype.sample_uniform(shape)
a = a0 + a1
d0, d1 = self._build_queues(a0, a1)
return a, d0, d1
def _mask_private(prot: Pond, x: PondPrivateTensor) -> PondMaskedTensor:
x0, x1 = x.unwrapped
with tf.name_scope("mask"):
a, a0, a1 = prot.triple_source.mask(x.backing_dtype, x.shape)
with tf.name_scope("online"):
with tf.device(prot.server_0.device_name):
alpha0 = x0 - a0
with tf.device(prot.server_1.device_name):
alpha1 = x1 - a1
with tf.device(prot.server_0.device_name):
alpha_on_0 = alpha0 + alpha1
with tf.device(prot.server_1.device_name):
alpha_on_1 = alpha0 + alpha1
return PondMaskedTensor(prot, x, a, a0, a1, alpha_on_0, alpha_on_1, x.is_scaled,)
def _matmul_masked_masked(prot, x, y):
assert isinstance(x, PondMaskedTensor), type(x)
assert isinstance(y, PondMaskedTensor), type(y)
a, a0, a1, alpha_on_0, alpha_on_1 = x.unwrapped
b, b0, b1, beta_on_0, beta_on_1 = y.unwrapped
with tf.name_scope("matmul"):
ab0, ab1 = prot.triple_source.matmul_triple(a, b)
with tf.device(prot.server_0.device_name):
with tf.name_scope("combine"):
alpha = alpha_on_0
beta = beta_on_0
z0 = ab0 + a0.matmul(beta) + alpha.matmul(b0) + alpha.matmul(beta)
with tf.device(prot.server_1.device_name):
with tf.name_scope("combine"):
alpha = alpha_on_1
beta = beta_on_1
z1 = ab1 + a1.matmul(beta) + alpha.matmul(b1)
z = PondPrivateTensor(prot, z0, z1, x.is_scaled or y.is_scaled)
z = prot.truncate(z) if x.is_scaled and y.is_scaled else z
return z

被折叠的 条评论
为什么被折叠?



