- 博客(12)
- 收藏
- 关注
原创 Pycharm配置Anaconda详细教程(新建项目、打开现有项目)
Pycharm是可使用Python进行项目开发的IDE工具,而Anaconda则是创建管理多个Python环境的集成软件,将Pycharm与Anaconda配置在一起,即可方便的切换不同Python环境来开发或者运行项目。本文使用到的相关软件版本如下:Pycharm下载安装教程Anaconda下载安装教程附:已创建好的Anaconda的Python环境,名为badou->Anaconda创建新Python环境。
2023-12-02 19:34:12 18161
原创 Pycharm详细安装教程
PyCharm是一种Python IDE(Integrated Development Environment,集成开发环境),带有一整套可以帮助用户在使用Python语言开发时提高其效率的工具,比如调试、语法高亮、项目管理、代码跳转、智能提示、自动完成、单元测试、版本控制等功能。本文详细介绍一下Pycharm的安装教程。以上就是Pycharm的下载以及安装教程,感兴趣的朋友也可以下载其他版本,但安装步骤以及配置Anaconda的步骤可能会有所不同,请酌情考虑。
2023-12-02 17:33:50 3609
原创 基于Anaconda搭建深度学习环境,安装Tensorflow、Keras和Pytorch
安装好Anaconda之后,我们可以接着配置一个用于人工智能开发的Python环境。以上就是今天要讲的内容,本文使用Anaconda新建了一个Python环境,安装了几个常用的人工智能开发框架,仅供参考。
2023-11-28 01:44:12 5391 1
原创 Anaconda安装教程
Anaconda,是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。简单点说就是可同时管理多个Python环境、可同时下载多个Python第三方包的管理软件。
2023-11-28 00:35:49 2474
原创 数字图像处理笔记:一
文章目录一、什么是数字图像处理二、数字图像处理的基本步骤一、什么是数字图像处理 一幅图像可定义为二维函数f(x,y)f(x,y)f(x,y),其中xxx和yyy是空间(平面)坐标,而任何一对空间坐标(x,y)(x,y)(x,y)处的幅值fff称为该点处的强度或灰度值。 当x,yx,yx,y和灰度值fff是有限的离散数值时,我们称该图像为数字图像。 注意:数字图像是由有限数量的元素组...
2020-04-07 17:13:17 498
转载 LBP特征学习
今天重点学习了纹理特征提取算法LBP,这个算法可以用于纹理特征提取和人脸识别,应用比较广泛。首先介绍LBP算法的原理,然后是LBP特征的提取步骤,最后使用OpenCV实现了这个算法。 LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性...
2018-05-06 16:17:20 369
转载 图像学习之如何理解方向梯度直方图(Histogram Of Gradient)
本文转载自:https://www.leiphone.com/news/201708/ZKsGd2JRKr766wEd.html特征描述子(Feature Descriptor)特征描述子就是图像的表示,抽取了有用的信息,丢掉了不相关的信息。通常特征描述子会把一个w*h*3(宽高3,3个channel)的图像转换成一个长度为n的向量/矩阵。比如一副64*128*3的图像,经过转换后
2017-11-21 14:44:50 432
原创 OpenCV-摄像机模型与标定(一)
摄像机模型我们先看摄像机模型中最简单的针孔模型。 如图所示,f是摄像机焦距,Z是摄像机到物体的距离,X是物体长度,x是图像平面上的物体图像。其数值可以通过相似三角形-x/f=X/Z得到,或 在实际针孔摄像机中,该点被“投影”到成像表面。其结果是在图像平面(也成为投影平面,projective plane)上,图像被聚焦。因此与远处物体相关的图像大小只用一个摄像机参数来描述:焦距(foca
2017-11-15 17:28:19 829
原创 程序员注释神器
愿注释赐我力量,远离bug! 第一种:/*** ┏┓ ┏┓+ +* ┏┛┻━━━┛┻┓ + +* ┃ ┃ * ┃ ━ ┃ ++ + + +* ████━████ ┃+* ┃ ┃ +* ┃ ┻ ┃* ┃ ┃ + +*
2017-11-15 11:18:56 630
原创 锐角三角函数的定义
锐角三角函数的关系式:同角三角函数基本关系式tanα·cotα=1sin2α·cos2α=1cos2α·sin2α=1sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα(sinα)2+(cosα)2=11+tanα=secα1+cotα=cscα诱导公式sin(-α)=-sinαcos(-α)=cos
2017-09-25 09:35:57 1124
转载 asp.net与三层架构(BLL DAL Model)
首先,MVC和三层架构,是不一样的。 三层架构中,DAL(数据访问层)、BLL(业务逻辑层)、WEB层各司其职,意在职责分离。 MVC是 Model-View-Controller,严格说这三个加起来以后才是三层架构中的WEB层,也就是说,MVC把三层架构中的WEB层再度进行了分化,分成了控制器、视图、实体三个部分,控制器完成页面逻辑,通过实体来与界面层完成通话;而C层直接与三层中的B
2016-08-10 19:55:51 914
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人