摄像机模型
我们先看摄像机模型中最简单的针孔模型。
如图所示,f是摄像机焦距,Z是摄像机到物体的距离,X是物体长度,x是图像平面上的物体图像。其数值可以通过相似三角形-x/f=X/Z得到,或
在实际针孔摄像机中,该点被“投影”到成像表面。其结果是在图像平面(也成为投影平面,projective plane)上,图像被聚焦。因此与远处物体相关的图像大小只用一个摄像机参数来描述:焦距(focal length)。
等价形式
在图像中,我们交换针孔和图像平面,主要的差别是现在物体出现在等式右边。针孔中的点被理解为投影中心(center ofprojection)。这样,每一条光线,从远处物体的某个点出发,到达投影平面的中心。光轴与图像平面的交点被称为主点(principal point)。光束与图像平面的相交生成图像,而平面到投影中心的距离是f。这样形成更容易理解的三角形相似关系x/f=X/Z。
主点不等于成像仪的中心,实际上,芯片的中心通常不在光轴上,因此引入两个新的参数Cx与Cy。这样物理世界中的点Q,其坐标为(X,Y,Z),以某些偏移的方式投影为(xscreen,yscreen)(原谅我打不出来)。
注意,我们引入了两个不同的焦距。原因是单个像素点在低价成像仪上是矩形而不是正方形的。其中fx与fy是组合量。
基本投影几何
基于上述推论,图像平面是一个二维投影空间,因此可以用一个三维齐次向量q=(q1,q2,q3)来表示该平面上的点,通过除以q3计算实际的像素坐标值。
其中摄像机的参数(fx,fy,Cx和Cy) 排列为一个3x3的矩阵,该矩阵称为摄像机的内参数矩阵(camera instrinsics matrix)。展开该式,可以发现w=Z,并且点q式齐次坐标形式。除以w(或Z),就可以恢复以前的定义(即图像像素坐标)。