概率计算式
-
P ( A ‾ P(\overline{A} P(A B ‾ ) = P ( A + B ‾ ) \overline{B})=P(\overline{A+B}) B)=P(A+B)
-
互不相容=> A B = ∅ = > P ( A B ) = 0 AB=\emptyset=>P(AB)=0 AB=∅=>P(AB)=0
互相独立=>P(AB)=P(A)P(B) -
P ( A B ) = P ( A ) − P ( A B ‾ ) P(AB)=P(A)-P(A\overline{B}) P(AB)=P(A)−P(AB)
-
四对事件
A与B, A ‾ \overline{A} A与B, B ‾ \overline{B} B与A, A ‾ \overline{A} A与 B ‾ \overline{B} B,任何一对相互独立,其他都独立
若A,B相互独立,则P(B|A)=A(直观上就是与条件无关) -
P(A-B)=1成立时,A,B,C三个事件相互独立。
P ( A − B ) = 1 P(A-B)=1 P(A−B)=1,则 P ( A B ‾ ) = 1 , P(A\overline{B})=1, P(AB)=1,故 P ( A ) = 1 , P ( B ‾ ) = 1 P(A)=1,P(\overline{B})=1 P(A)=1,P(B)=1,故而 P ( A ‾ ) = P ( B ) = 0 , P(\overline{A})=P(B)=0, P(A)=P(B)=0,于是 A , B ‾ , A ‾ , B A,\overline{B},\overline{A},B A,B,A,B与任何一个事件均独立。即A,B,C相互独立。 -
P ( C ∣ A B ) = 1 P(C|AB)=1 P(C∣AB)=1,可以得到AB发生,C必发生。 P ( C ) > = P ( A B ) P(C)>=P(AB) P(C)>=P(AB)
-
P ( A B ) P(AB) P(AB)的范围:
当 B B B属于 A A A时, P ( A B ) P(AB) P(AB)最大
由 P ( A B ) = P ( A ) + P ( B ) − P ( A + B ) , P ( A + B ) P(AB)=P(A)+P(B)-P(A+B),P(A+B) P(AB)=P(A)+P(B)−P(A+B),P(A+B)最大时, P ( A B ) P(AB) P(AB)最小 -
常见离散随机变量的分布
表示 | 分布律 | 含义 | E X EX EX | D X DX DX | |
---|---|---|---|---|---|
二项分布 | X X X~ B ( n , p ) B(n,p) B(n,p) | P { X = k } = C n k p k q n − k P{\{X=k\}}=C_n^kp^kq^{n-k} P{X=k}=Cnkpkqn−k | 独立重复事件n次,事件A发生k次的概率 | n p np np | n p ( 1 − p ) np(1-p) np(1−p) |
超几何分布 | X X X~ H ( n , M , N ) H(n,M,N) H(n,M,N) | P { X = k } = C M k ∗ C N − M n − k C N n P{\{X=k\}}=\frac{C_M^k*C_{N-M}^{n-k}}{C_N^n} P{X=k}=CNnCMk∗CN−Mn−k | N件产品中有M件次品,从中选取n件产品(不放回),有X件次品的概率 | ||
泊松分布 | X X X~ P ( λ ) P(\lambda) P(λ) | P { X = k } = λ k e − λ k ! P{\{X=k\}}=\frac{\lambda^ke^{-\lambda}}{k!} P{X=k}=k!λke−λ | n很大,p很小时可以用泊松分布逼近 | λ \lambda λ | λ \lambda λ |
几何分布 | X X X~ G ( p ) G(p) G(p) | P { X = k } = p ( 1 − p ) k − 1 P{\{X=k\}}=p(1-p)^{k-1} P{X=k}=p(1−p)k−1 | 事件A首次发生时的次数 | 1 p \frac{1}{p} p1 | 1 − p p 2 \frac{1-p}{p^2} p21−p |
指数分布,几何分布没有记忆性
- 连续型概率分布
分布 | 概率密度函数 | 分布函数 | |||
---|---|---|---|---|---|
均匀分布 | X~ U ( a , b ) U(a,b) U(a,b) | f ( x ) = { 1 b − a , a < x < b , 0 , 其 他 f(x)=\begin{cases} \frac{1}{b-a},a<x<b,\\0, 其他\end{cases} f(x)={b−a1,a<x<b,0,其他 | F ( x ) = { 0 , x < a x − a b − a , a ≤ x < b , a , x ≥ b F(x)=\begin{cases}0,x<a\\\frac{x-a}{b-a},a≤x<b,\\a,x≥b \end{cases} F(x)=⎩⎪⎨⎪⎧0,x<ab−ax−a,a≤x<b,a,x≥b | a + b 2 \frac{a+b}{2} 2a+b | ( b − a ) 2 12 \frac{(b-a)^2}{12} 12(b−a)2 |
指数分布 | X~ e ( λ ) e(\lambda) e(λ) | f ( x ) = { λ e − λ x , x ≥ 0 0 , x < 0 f(x)=\begin{cases}\lambda{e^{-\lambda x}},x≥0\\0,x<0\end{cases} f(x)={λe−λx,x≥00,x<0 | F ( x ) = { 1 − e − λ x , x > 0 0 , x ≤ 0 F(x)=\begin{cases}1-e^{-\lambda x},x>0\\0,x≤0 \end{cases} F(x)={1−e−λx,x>00,x≤0 | E X = 1 λ EX=\frac{1}{\lambda} EX=λ1 | D X = 1 λ 2 DX=\frac{1}{\lambda^2} DX=λ21 |
正态分布 | X~ N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) | φ ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 \varphi(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} φ(x)=2πσ1e−2σ2(x−μ)2 | E X = μ EX=\mu EX=μ | D X = σ 2 DX=\sigma^2 DX=σ2 |
-
F 1 ( x ) , F 2 ( x ) F_1(x),F_2(x) F1(x),F2(x)都是分布函数,故 F 1 ( x ) F 2 ( x ) F_1(x)F_2(x) F1(x)F2(x)也是分布函数,
-
求随机变量X的函数的分布方法:
(1).定义法:求出分布函数,再求导
F Y ( y ) = P ( Y < = y ) = P ( g ( X ) < = y ) F_Y(y)=P(Y<=y)=P(g(X)<=y) FY(y)=P(Y<=y)=P(g(X)<=y)
f Y ( y ) = d [ F y ( y ) ] d y f_Y(y)=\frac{d[F_y(y)]}{dy} fY(y)=dyd[Fy(y)]
(2).公式法:
条件Y=g(X),函数单调
f Y ( y ) = { f [ h ( y ) ] ∗ ∣ h ′ ( y ) ∣ , a < y < b , 0 , o t h e r , ( ( a , b ) 是 h ( y ) 的 定 义 域 ) f_Y(y)=\begin{cases}f[h(y)]*|h'(y)|,a<y<b,\\0,other,\end{cases}((a,b)是h(y)的定义域) fY(y)={f[h(y)]∗∣h′(y)∣,a<y<b,0,other,((a,b)是h(y)的定义域) -
验证概率密度的方法:
(1)证明: f ( x ) > 0 , ∫ − i n f + i n f f ( x ) d x = 1 f(x)>0,\int_{-inf}^{+inf}f(x)dx=1 f(x)>0,∫−inf+inff(x)dx=1
(2)证明: f ( x ) = F ′ ( x ) f(x)=F'(x) f(x)=F′(x) -
A,B为任意两个事件,且 A ⊆ B , P ( B ) > 0 A \subseteq B,P(B)>0 A⊆B,P(B)>0,则 P ( A B ) = P ( A ) P(AB)=P(A) P(AB)=P(A)
-
若 P ( B ∣ A ) = P ( B ∣ A ‾ ) P(B|A)=P(B|\overline{A}) P(B∣A)=P(B∣A),则可说明 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)
概率密度以及分布函数
- 条件分布函数:
F X ∣ Y ( x ∣ y ) = ∫ − i n f x f ( u , y ) f Y ( y ) d u F_{X|Y}(x|y)=\int_{-inf}^{x}\frac{f(u,y)}{f_Y(y)}du FX∣Y(x∣y)=∫−infxfY(y)f(u,y)du - 条件概率密度:
f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) f_{X|Y}(x|y)=\frac{f(x,y)}{f_Y(y)} fX∣Y(x∣y)=fY(y)f(x,y)
即:求条件分布=联合发布/边缘分布 - 独立性讨论:
定义: P ( X ≤ x , Y ≤ y ) = P ( X ≤ x ) P ( Y ≤ y ) P(X≤x,Y≤y)=P(X≤x)P(Y≤y) P(X≤x,Y≤y)=P(X≤x)P(Y≤y),则X与Y相互独立
离散型相互独立:
p i , j = p i p j p_{i,j}=p_ip_j pi,j=pipj (都是等价关系)
连续型相互独立:
f ( x , y ) = f X ( x ) f Y ( y ) f(x,y)=f_X(x)f_Y(y) f(x,y)=fX(x)fY(y) (都是等价关系)
f X ∣ Y ( x ∣ y ) = f X ( x ) f_{X|Y}(x|y)=f_X(x) fX∣Y(x∣y)=fX(x)
f Y ∣ X ( y ∣ x ) = f Y ( y ) f_{Y|X}(y|x)=f_Y(y) fY∣X(y∣x)=fY(y)
二维正态相互独立: p = 0 p=0 p=0
X与Y相互独立,则 f ( X ) f(X) f(X)与 f ( Y ) f(Y) f(Y)也相互独立。 - 最大最小函数的分布:
{ m a x { X , Y } ≤ a } = { X ≤ a , Y ≤ a } \{{max\{ X,Y\}}≤a\}=\{X≤a,Y ≤a\} {max{X,Y}≤a}={X≤a,Y≤a}
{ m i n { X , Y } ≤ a } = 全 集 − { X > a , Y > a } \{{min\{ X,Y\}}≤a\}=全集-\{X>a,Y >a\} {min{X,Y}≤a}=全集−{X>a,Y>a}
m a x { X , Y } = X + Y + ∣ X − Y ∣ 2 max\{X,Y\}=\frac{X+Y+|X-Y|}{2} max{X,Y}=2X+Y+∣X−Y∣
m i n { X , Y } = X + Y − ∣ X − Y ∣ 2 min\{X,Y\}=\frac{X+Y-|X-Y|}{2} min{X,Y}=2X+Y−∣X−Y∣
m a x { X , Y } ∗ m i n { X , Y } = X Y max\{X,Y\}*min\{X,Y\}=XY max{X,Y}∗min{X,Y}=XY
m a x { X , Y } + m i n { X , Y } = X + Y max\{X,Y\}+min\{X,Y\}=X+Y max{X,Y}+min{X,Y}=X+Y - Σ i = 0 k C k i = 2 k \Sigma_{i=0}^kC_k^i=2^k Σi=0kCki=2k
- ∫ − i n f i n f e − x 2 d x = x \int_{-inf}^{inf}e^{-x^2}dx=\sqrt{x} ∫−infinfe−x2dx=x
期望和方差
-
推导 E ( ( X − C ) 2 ) 与 E ( ( X − μ ) 2 ) E((X-C)^2)与E((X-\mu)^2) E((X−C)2)与E((X−μ)2)的关系
E ( ( X − C ) 2 ) = E ( ( X − μ + μ − C ) 2 ) = E [ ( x − μ ) 2 + ( μ − C ) 2 + 2 ( x − μ ) ( μ − C ) ] = E ( ( x − μ ) 2 ) + E ( ( μ − C ) 2 ) ≥ E [ ( X − μ ) 2 ] E((X-C)^2)\\ =E((X-\mu+\mu-C)^2)\\=E[(x-\mu)^2+(\mu-C)^2+2(x-\mu)(\mu-C)]\\=E((x-\mu)^2)+E((\mu-C)^2)\\≥E[(X-\mu)^2] E((X−C)2)=E((X−μ+μ−C)2)=E[(x−μ)2+(μ−C)2+2(x−μ)(μ−C)]=E((x−μ)2)+E((μ−C)2)≥E[(X−μ)2] -
伽马函数:计算广义积分
Γ ( α ) = ∫ 0 + i n f x α − 1 ∗ e − x d x , Γ ( 1 ) = 1 , Γ ( 1 2 ) = π Γ(\alpha)=\int_0^{+inf}x^{\alpha-1}*e^{-x}dx,Γ(1)=1,Γ(\frac{1}{2})=\sqrt{\pi} Γ(α)=∫0+infxα−1∗e−xdx,Γ(1)=1,Γ(21)=π
Γ ( α + 1 ) = α ∗ Γ ( α ) , F ( n + 1 ) = n ! Γ(\alpha+1)=\alpha*Γ(\alpha),F(n+1)=n! Γ(α+1)=α∗Γ(α),F(n+1)=n! -
矩
原点矩: E ( X k ) E(X^k) E(Xk)
中心距: E ( ( X − E X ) k ) E((X-EX)^k) E((X−EX)k)
混合矩: E ( X k ∗ Y l ) E(X^k*Y^l) E(Xk∗Yl)
混合中心矩: E ( ( X − E X ) k ( Y − E Y ) l ) E((X-EX)^k(Y-EY)^l) E((X−EX)k(Y−EY)l) -
协方差:
C o v ( X , Y ) = E ( ( X − E X ) ( Y − E Y ) ) = E ( X Y ) − E X E Y Cov(X,Y)=E((X-EX)(Y-EY))=E(XY)-EXEY Cov(X,Y)=E((X−EX)(Y−EY))=E(XY)−EXEY
D ( X + Y ) = D X + D Y + 2 ∗ C o v ( X , Y ) , 当 X , Y 独 立 时 , D ( X + Y ) = D X + D Y D(X+Y)=DX+DY+2*Cov(X,Y),当X,Y独立时,D(X+Y)=DX+DY D(X+Y)=DX+DY+2∗Cov(X,Y),当X,Y独立时,D(X+Y)=DX+DY
相关系数:
ρ X Y = C o v ( X , Y ) D X D Y \rho_{XY}=\frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}} ρXY=DXDYCov(X,Y) -
协方差与相关系数的性质
C o v ( X , Y ) = C o v ( Y , X ) Cov(X,Y)=Cov(Y,X) Cov(X,Y)=Cov(Y,X)
C o v ( X , X ) = D X Cov(X,X)=DX Cov(X,X)=DX
C o v ( a X , b Y ) = a b C o v ( X , Y ) Cov(aX,bY)=abCov(X,Y) Cov(aX,bY)=abCov(X,Y)
C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) Cov(X_1+X_2,Y)=Cov(X_1,Y)+Cov(X_2,Y) Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)
D ( X − Y ) = D X + D Y − 2 C o v ( X , Y ) D(X-Y)=DX+DY-2Cov(X,Y) D(X−Y)=DX+DY−2Cov(X,Y)
∣ ρ X Y ∣ = 1 |\rho_{XY}|=1 ∣ρXY∣=1等价于 P ( Y = a X + b ) = 1 ( a ≠ 0 ) P(Y=aX+b)=1(a≠0) P(Y=aX+b)=1(a=0) -
独立与不相关之间的关系
独立,必然不相关,反之不对。
若X,Y不相关,则等价于:
ρ X Y = 0 \rho_{XY}=0 ρXY=0
C o v ( X , Y ) = 0 Cov(X,Y)=0 Cov(X,Y)=0
E X Y = E X E Y EXY=EXEY EXY=EXEY
D ( X + Y ) = D X + D Y D(X+Y)=DX+DY D(X+Y)=DX+DY
二维正态,独立与不相关等价 -
线性组合的相关系数:
若 U = a 1 X + b 1 , V = a 2 X + b 2 , 则 ρ U V = a 1 a 2 ∣ a 1 a 2 ∣ ρ X Y U=a_1X+b_1,V=a_2X+b_2,则\rho_{UV}=\frac{a_1a_2}{|a_1a_2|}\rho_{XY} U=a1X+b1,V=a2X+b2,则ρUV=∣a1a2∣a1a2ρXY -
X,Y的相关系数是标准化随机变量 X ∗ , Y ∗ X^*,Y^* X∗,Y∗的协方差,其中 X ∗ = X − E X D X , Y ∗ = Y − E Y D Y X^*=\frac{X-EX}{\sqrt{DX}},Y^*=\frac{Y-EY}{\sqrt{DY}} X∗=DXX−EX,Y∗=DYY−EY
-
若X和Y存在函数关系,则不相互独立
-
若 ρ X Y = 0 \rho_{XY}=0 ρXY=0,则称X与Y不相关,即没有线性关系,但可能有其他关系。若X,Y独立(啥关系都没),则X与Y不相关(线性关系)。
-
大数定理:
切比雪夫不等式: P { ∣ X − E X ∣ > = ε } < = D X ε 2 P{\{|X-EX|>=\varepsilon}\}<=\frac{DX}{\varepsilon ^2} P{∣X−EX∣>=ε}<=ε2DX
切比雪夫不等式可估计[EX- ε \varepsilon ε,EX+ ε \varepsilon ε]之间的概率
依概率收敛: lim n − > i n f P { ∣ X n − a ∣ } = 1 \lim_{n->inf}P\{|X_n-a|\}=1 limn−>infP{∣Xn−a∣}=1
大数定律: lim n − > i n f p { ∣ 1 n Σ i = 1 n X i − a n ∣ < ε } = 1 \lim_{n->inf}p\{|\frac{1}{n}\Sigma_{i=1}^n X_i-a_n|<\varepsilon\}=1 limn−>infp{∣n1Σi=1nXi−an∣<ε}=1 -
三个常用的大数定理
切比雪夫大数定理:
{ X n X_n Xn}相互独立同分布, E X i , D X i EX_i,DX_i EXi,DXi存在,则: lim n − > i n f { ∣ 1 n Σ i = 1 n X i − μ ∣ < ε } = 1 \lim_{n->inf}\{|\frac{1}{n}\Sigma_{i=1}^nX_i-\mu|<\varepsilon\}=1 limn−>inf{∣n1Σi=1nXi−μ∣<ε}=1
独立分布的随机变量的算数平均值集中在期望值附近
伯努利大数定律:
n A n_A nA是n次独立重复试验,事件A发生的次数,p是A在一次实验中发生的概率。 lim n − > i n f p { ∣ n A n − p ∣ < ε } = 1 \lim_{n->inf}p\{|\frac{n_A}{n}-p|<\varepsilon\}=1 limn−>infp{∣nnA−p∣<ε}=1
频率依概率收敛于概率
辛钦大数定律:
{ X n X_n Xn}独立同分布的随机变量序列, E X i = μ EX_i=\mu EXi=μ,则:
lim n − > i n f p { ∣ 1 n Σ i = 1 n X i − μ ∣ < ε } = 1 \lim_{n->inf}p\{|\frac{1}{n}\Sigma_{i=1}^n X_i-\mu|<\varepsilon\}=1 limn−>infp{∣n1Σi=1nXi−μ∣<ε}=1 -
常用中心极限定理:
独立同分布的中心极限定理:
X n X_n Xn是独立同分布的随机变量序列,且 E X i = μ , D X i = σ 2 EX_i=\mu,DX_i=\sigma^2 EXi=μ,DXi=σ2,则: Y n = Σ i = 1 n X i − n μ n σ 符 合 N ( 0 , 1 ) Y_n=\frac{\Sigma_{i=1}^nX_i -n\mu}{\sqrt{n} \sigma} 符合 N(0,1) Yn=nσΣi=1nXi−nμ符合N(0,1)
拉普拉斯定理:
设随机变量 X n X_n Xn~ B ( n , p ) B(n,p) B(n,p), X n = Y n − n p n p ( 1 − p ) X_n=\frac{Y_n-np}{\sqrt{np(1-p)}} Xn=np(1−p)Yn−np符合正态分布
数理统计
-
统计量:
样本均值: X ‾ = Σ X i n \overline{X}=\frac{\Sigma{X_i}}{n} X=nΣXi
样本方差: S 2 = Σ ( X i − X ‾ ) 2 n − 1 S^2=\frac{\Sigma{(X_i-\overline{X})^2}}{n-1} S2=n−1Σ(Xi−X)2 -
正态总体下的样本均值的分布:
E X ‾ = μ E\overline{X}=\mu EX=μ
D X ‾ = σ 2 n D\overline{X}=\frac{\sigma^2}{n} DX=nσ2
E ( S 2 ) = σ 2 E(S^2)=\sigma^2 E(S2)=σ2
a ‾ \overline{a} a -
Σ i = 1 n ( x i − x ‾ ) = Σ i = 1 n ( x i 2 ) − n x ‾ 2 \Sigma_{i=1}^{n}(x_i- \overline{x})=\Sigma_{i=1}^{n}(x_i^2)-n\overline{x}^2 Σi=1n(xi−x)=Σi=1n(xi2)−nx2
正态总体下的抽样分布:
- 设总体
X
X
X~
N
(
μ
,
σ
2
)
,
X
i
N(\mu,\sigma^2),Xi
N(μ,σ2),Xi为X的简单随机样本,则:
( n − 1 ) S 2 σ 2 = Σ ( X i − X ‾ ) 2 σ 2 \frac{(n-1)S^2}{\sigma^2}=\frac{\Sigma(X_i-\overline{X})^2}{\sigma^2} σ2(n−1)S2=σ2Σ(Xi−X)2~ X 2 ( n − 1 ) X^2(n-1) X2(n−1)
且 X ‾ \overline{X} X与 S 2 S^2 S2相互独立 - X ‾ − μ S / n \frac{\overline{X}-\mu}{S/\sqrt{n}} S/nX−μ~ t ( n − 1 ) t(n-1) t(n−1)
- 设总体
X
X
X~
N
(
μ
1
,
σ
1
2
)
N(\mu_1,\sigma_1^2)
N(μ1,σ12),
Y
Y
Y~
N
(
μ
2
,
σ
2
2
)
N(\mu_2,\sigma_2^2)
N(μ2,σ22),且X与Y独立,若
X
i
,
Y
i
X_i,Y_i
Xi,Yi分别来自X与Y样本,则:
Σ j = 1 m ( Y j − Y ‾ ) 2 ( m − 1 ) σ 2 2 / Σ j = 1 n ( X i − X ‾ ) 2 ( n − 1 ) σ 1 2 \frac{\Sigma_{j=1}^{m}({Y_j}-\overline{Y})^2}{(m-1)\sigma_2^2}/\frac{\Sigma_{j=1}^{n}({X_i}-\overline{X})^2}{(n-1)\sigma_1^2} (m−1)σ22Σj=1m(Yj−Y)2/(n−1)σ12Σj=1n(Xi−X)2~ F ( m − 1 , n − 1 ) F(m-1,n-1) F(m−1,n−1)
F = S 1 2 / σ 1 2 S 2 2 / σ 2 2 F=\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} F=S22/σ22S12/σ12~ F ( n − 1 , m − 1 ) F(n-1,m-1) F(n−1,m−1)
分位数的换算性质:
- 换算:上分位置 α \alpha α=下分位 ( 1 − α ) (1-\alpha) (1−α)
- 对称性:
N
(
0
,
1
)
N(0,1)
N(0,1)与
t
(
n
)
t(n)
t(n)有对称性
u 1 − α = − u α u_{1-\alpha}=-u_{\alpha} u1−α=−uα
X 2 与 F X^2与F X2与F分布具有非对称性,由非负性得:
0 < X 1 − α 2 ( n ) < X α 2 ( n ) 0<X_{1-\alpha}^2(n)<X_{\alpha}^2(n) 0<X1−α2(n)<Xα2(n)
0 < F 1 − α ( n , m ) < F α ( n , m ) 0<F_{1-\alpha}(n,m)<F_{\alpha}(n,m) 0<F1−α(n,m)<Fα(n,m) - F 1 − α ( n , m ) ∗ F α ( m , n ) = 1 F_{1-\alpha}(n,m)*F_{\alpha}(m,n)=1 F1−α(n,m)∗Fα(m,n)=1
可加性(二伯正码)
前提:X,Y相互独立
二项分布;泊松分布;正态分布;伽马分布
假设检验
- 当规定出现U>3时候,否定假设
H
0
H_0
H0,接受
H
1
H_1
H1,则第一类假设
p
1
=
P
(
U
>
3
∣
H
0
)
p_1=P(U>3|H_0)
p1=P(U>3∣H0),第二类假设
p
2
=
P
(
U
>
3
∣
H
1
)
p_2=P(U>3|H_1)
p2=P(U>3∣H1)
解释:第一类错误:错杀好人;第二类错误:放走坏人