考研数学-概率论

概率计算式
  1. P ( A ‾ P(\overline{A} P(A B ‾ ) = P ( A + B ‾ ) \overline{B})=P(\overline{A+B}) B)P(A+B)

  2. 互不相容=> A B = ∅ = > P ( A B ) = 0 AB=\emptyset=>P(AB)=0 AB==>P(AB)=0
    互相独立=>P(AB)=P(A)P(B)

  3. P ( A B ) = P ( A ) − P ( A B ‾ ) P(AB)=P(A)-P(A\overline{B}) P(AB)=P(A)P(AB)

  4. 四对事件
    A与B, A ‾ \overline{A} A与B, B ‾ \overline{B} B与A, A ‾ \overline{A} A B ‾ \overline{B} B,任何一对相互独立,其他都独立
    若A,B相互独立,则P(B|A)=A(直观上就是与条件无关)

  5. P(A-B)=1成立时,A,B,C三个事件相互独立。
    P ( A − B ) = 1 P(A-B)=1 P(AB)=1,则 P ( A B ‾ ) = 1 , P(A\overline{B})=1, P(AB)=1, P ( A ) = 1 , P ( B ‾ ) = 1 P(A)=1,P(\overline{B})=1 P(A)=1,P(B)=1,故而 P ( A ‾ ) = P ( B ) = 0 , P(\overline{A})=P(B)=0, P(A)=P(B)=0,于是 A , B ‾ , A ‾ , B A,\overline{B},\overline{A},B A,B,A,B与任何一个事件均独立。即A,B,C相互独立。

  6. P ( C ∣ A B ) = 1 P(C|AB)=1 P(CAB)=1,可以得到AB发生,C必发生。 P ( C ) > = P ( A B ) P(C)>=P(AB) P(C)>=P(AB)

  7. P ( A B ) P(AB) P(AB)的范围:
    B B B属于 A A A时, P ( A B ) P(AB) P(AB)最大
    P ( A B ) = P ( A ) + P ( B ) − P ( A + B ) , P ( A + B ) P(AB)=P(A)+P(B)-P(A+B),P(A+B) P(AB)=P(A)+P(B)P(A+B),P(A+B)最大时, P ( A B ) P(AB) P(AB)最小

  8. 常见离散随机变量的分布

表示分布律含义 E X EX EX D X DX DX
二项分布 X X X~ B ( n , p ) B(n,p) B(n,p) P { X = k } = C n k p k q n − k P{\{X=k\}}=C_n^kp^kq^{n-k} P{X=k}=Cnkpkqnk独立重复事件n次,事件A发生k次的概率 n p np np n p ( 1 − p ) np(1-p) np(1p)
超几何分布 X X X~ H ( n , M , N ) H(n,M,N) H(n,M,N) P { X = k } = C M k ∗ C N − M n − k C N n P{\{X=k\}}=\frac{C_M^k*C_{N-M}^{n-k}}{C_N^n} P{X=k}=CNnCMkCNMnkN件产品中有M件次品,从中选取n件产品(不放回),有X件次品的概率
泊松分布 X X X~ P ( λ ) P(\lambda) Pλ P { X = k } = λ k e − λ k ! P{\{X=k\}}=\frac{\lambda^ke^{-\lambda}}{k!} P{X=k}=k!λkeλn很大,p很小时可以用泊松分布逼近 λ \lambda λ λ \lambda λ
几何分布 X X X~ G ( p ) G(p) G(p) P { X = k } = p ( 1 − p ) k − 1 P{\{X=k\}}=p(1-p)^{k-1} P{X=k}=p(1p)k1事件A首次发生时的次数 1 p \frac{1}{p} p1 1 − p p 2 \frac{1-p}{p^2} p21p

指数分布,几何分布没有记忆性

  1. 连续型概率分布
分布概率密度函数分布函数
均匀分布X~ U ( a , b ) U(a,b) U(a,b) f ( x ) = { 1 b − a , a < x < b , 0 , 其 他 f(x)=\begin{cases} \frac{1}{b-a},a<x<b,\\0, 其他\end{cases} f(x)={ba1,a<x<b,0, F ( x ) = { 0 , x < a x − a b − a , a ≤ x < b , a , x ≥ b F(x)=\begin{cases}0,x<a\\\frac{x-a}{b-a},a≤x<b,\\a,x≥b \end{cases} F(x)=0,x<abaxa,ax<b,a,xb a + b 2 \frac{a+b}{2} 2a+b ( b − a ) 2 12 \frac{(b-a)^2}{12} 12(ba)2
指数分布X~ e ( λ ) e(\lambda) e(λ) f ( x ) = { λ e − λ x , x ≥ 0 0 , x < 0 f(x)=\begin{cases}\lambda{e^{-\lambda x}},x≥0\\0,x<0\end{cases} f(x)={λeλx,x00,x<0 F ( x ) = { 1 − e − λ x , x > 0 0 , x ≤ 0 F(x)=\begin{cases}1-e^{-\lambda x},x>0\\0,x≤0 \end{cases} F(x)={1eλx,x>00,x0 E X = 1 λ EX=\frac{1}{\lambda} EX=λ1 D X = 1 λ 2 DX=\frac{1}{\lambda^2} DX=λ21
正态分布X~ N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) φ ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 \varphi(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} φ(x)=2π σ1e2σ2(xμ)2 E X = μ EX=\mu EX=μ D X = σ 2 DX=\sigma^2 DX=σ2
  1. F 1 ( x ) , F 2 ( x ) F_1(x),F_2(x) F1(x),F2(x)都是分布函数,故 F 1 ( x ) F 2 ( x ) F_1(x)F_2(x) F1(x)F2(x)也是分布函数,

  2. 求随机变量X的函数的分布方法:
    (1).定义法:求出分布函数,再求导
    F Y ( y ) = P ( Y < = y ) = P ( g ( X ) < = y ) F_Y(y)=P(Y<=y)=P(g(X)<=y) FY(y)=P(Y<=y)=P(g(X)<=y)
    f Y ( y ) = d [ F y ( y ) ] d y f_Y(y)=\frac{d[F_y(y)]}{dy} fY(y)=dyd[Fy(y)]
    (2).公式法:
    条件Y=g(X),函数单调
    f Y ( y ) = { f [ h ( y ) ] ∗ ∣ h ′ ( y ) ∣ , a < y < b , 0 , o t h e r , ( ( a , b ) 是 h ( y ) 的 定 义 域 ) f_Y(y)=\begin{cases}f[h(y)]*|h'(y)|,a<y<b,\\0,other,\end{cases}((a,b)是h(y)的定义域) fY(y)={f[h(y)]h(y),a<y<b,0,other,((a,b)h(y))

  3. 验证概率密度的方法:
    (1)证明: f ( x ) > 0 , ∫ − i n f + i n f f ( x ) d x = 1 f(x)>0,\int_{-inf}^{+inf}f(x)dx=1 f(x)>0,inf+inff(x)dx=1
    (2)证明: f ( x ) = F ′ ( x ) f(x)=F'(x) f(x)=F(x)

  4. A,B为任意两个事件,且 A ⊆ B , P ( B ) > 0 A \subseteq B,P(B)>0 ABP(B)>0,则 P ( A B ) = P ( A ) P(AB)=P(A) P(AB)=P(A)

  5. P ( B ∣ A ) = P ( B ∣ A ‾ ) P(B|A)=P(B|\overline{A}) P(BA)=P(BA),则可说明 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)

概率密度以及分布函数
  1. 条件分布函数:
    F X ∣ Y ( x ∣ y ) = ∫ − i n f x f ( u , y ) f Y ( y ) d u F_{X|Y}(x|y)=\int_{-inf}^{x}\frac{f(u,y)}{f_Y(y)}du FXY(xy)=infxfY(y)f(u,y)du
  2. 条件概率密度:
    f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) f_{X|Y}(x|y)=\frac{f(x,y)}{f_Y(y)} fXY(xy)=fY(y)f(x,y)
    即:求条件分布=联合发布/边缘分布
  3. 独立性讨论:
    定义 P ( X ≤ x , Y ≤ y ) = P ( X ≤ x ) P ( Y ≤ y ) P(X≤x,Y≤y)=P(X≤x)P(Y≤y) P(Xx,Yy)=P(Xx)P(Yy),则X与Y相互独立
    离散型相互独立
    p i , j = p i p j p_{i,j}=p_ip_j pi,j=pipj (都是等价关系)
    连续型相互独立
    f ( x , y ) = f X ( x ) f Y ( y ) f(x,y)=f_X(x)f_Y(y) f(x,y)=fX(x)fY(y) (都是等价关系)
    f X ∣ Y ( x ∣ y ) = f X ( x ) f_{X|Y}(x|y)=f_X(x) fXY(xy)=fX(x)
    f Y ∣ X ( y ∣ x ) = f Y ( y ) f_{Y|X}(y|x)=f_Y(y) fYX(yx)=fY(y)
    二维正态相互独立 p = 0 p=0 p=0
    X与Y相互独立,则 f ( X ) f(X) f(X) f ( Y ) f(Y) f(Y)也相互独立。
  4. 最大最小函数的分布:
    { m a x { X , Y } ≤ a } = { X ≤ a , Y ≤ a } \{{max\{ X,Y\}}≤a\}=\{X≤a,Y ≤a\} {max{X,Y}a}={Xa,Ya}
    { m i n { X , Y } ≤ a } = 全 集 − { X > a , Y > a } \{{min\{ X,Y\}}≤a\}=全集-\{X>a,Y >a\} {min{X,Y}a}={X>a,Y>a}
    m a x { X , Y } = X + Y + ∣ X − Y ∣ 2 max\{X,Y\}=\frac{X+Y+|X-Y|}{2} max{X,Y}=2X+Y+XY
    m i n { X , Y } = X + Y − ∣ X − Y ∣ 2 min\{X,Y\}=\frac{X+Y-|X-Y|}{2} min{X,Y}=2X+YXY
    m a x { X , Y } ∗ m i n { X , Y } = X Y max\{X,Y\}*min\{X,Y\}=XY max{X,Y}min{X,Y}=XY
    m a x { X , Y } + m i n { X , Y } = X + Y max\{X,Y\}+min\{X,Y\}=X+Y max{X,Y}+min{X,Y}=X+Y
  5. Σ i = 0 k C k i = 2 k \Sigma_{i=0}^kC_k^i=2^k Σi=0kCki=2k
  6. ∫ − i n f i n f e − x 2 d x = x \int_{-inf}^{inf}e^{-x^2}dx=\sqrt{x} infinfex2dx=x
期望和方差
  1. 推导 E ( ( X − C ) 2 ) 与 E ( ( X − μ ) 2 ) E((X-C)^2)与E((X-\mu)^2) E((XC)2)E((Xμ)2)的关系
    E ( ( X − C ) 2 ) = E ( ( X − μ + μ − C ) 2 ) = E [ ( x − μ ) 2 + ( μ − C ) 2 + 2 ( x − μ ) ( μ − C ) ] = E ( ( x − μ ) 2 ) + E ( ( μ − C ) 2 ) ≥ E [ ( X − μ ) 2 ] E((X-C)^2)\\ =E((X-\mu+\mu-C)^2)\\=E[(x-\mu)^2+(\mu-C)^2+2(x-\mu)(\mu-C)]\\=E((x-\mu)^2)+E((\mu-C)^2)\\≥E[(X-\mu)^2] E((XC)2)=E((Xμ+μC)2)=E[(xμ)2+(μC)2+2(xμ)(μC)]=E((xμ)2)+E((μC)2)E[(Xμ)2]

  2. 伽马函数:计算广义积分
    Γ ( α ) = ∫ 0 + i n f x α − 1 ∗ e − x d x , Γ ( 1 ) = 1 , Γ ( 1 2 ) = π Γ(\alpha)=\int_0^{+inf}x^{\alpha-1}*e^{-x}dx,Γ(1)=1,Γ(\frac{1}{2})=\sqrt{\pi} Γ(α)=0+infxα1exdx,Γ(1)=1,Γ(21)=π
    Γ ( α + 1 ) = α ∗ Γ ( α ) , F ( n + 1 ) = n ! Γ(\alpha+1)=\alpha*Γ(\alpha),F(n+1)=n! Γ(α+1)=αΓ(α),F(n+1)=n!


  3. 原点矩: E ( X k ) E(X^k) E(Xk)
    中心距: E ( ( X − E X ) k ) E((X-EX)^k) E((XEX)k)
    混合矩: E ( X k ∗ Y l ) E(X^k*Y^l) E(XkYl)
    混合中心矩: E ( ( X − E X ) k ( Y − E Y ) l ) E((X-EX)^k(Y-EY)^l) E((XEX)k(YEY)l)

  4. 协方差:
    C o v ( X , Y ) = E ( ( X − E X ) ( Y − E Y ) ) = E ( X Y ) − E X E Y Cov(X,Y)=E((X-EX)(Y-EY))=E(XY)-EXEY Cov(X,Y)=E((XEX)(YEY))=E(XY)EXEY
    D ( X + Y ) = D X + D Y + 2 ∗ C o v ( X , Y ) , 当 X , Y 独 立 时 , D ( X + Y ) = D X + D Y D(X+Y)=DX+DY+2*Cov(X,Y),当X,Y独立时,D(X+Y)=DX+DY D(X+Y)=DX+DY+2Cov(X,Y),XYD(X+Y)=DX+DY
    相关系数:
    ρ X Y = C o v ( X , Y ) D X D Y \rho_{XY}=\frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}} ρXY=DX DY Cov(X,Y)

  5. 协方差与相关系数的性质
    C o v ( X , Y ) = C o v ( Y , X ) Cov(X,Y)=Cov(Y,X) Cov(X,Y)=Cov(Y,X)
    C o v ( X , X ) = D X Cov(X,X)=DX Cov(X,X)=DX
    C o v ( a X , b Y ) = a b C o v ( X , Y ) Cov(aX,bY)=abCov(X,Y) Cov(aX,bY)=abCov(X,Y)
    C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) Cov(X_1+X_2,Y)=Cov(X_1,Y)+Cov(X_2,Y) Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)
    D ( X − Y ) = D X + D Y − 2 C o v ( X , Y ) D(X-Y)=DX+DY-2Cov(X,Y) D(XY)=DX+DY2Cov(X,Y)
    ∣ ρ X Y ∣ = 1 |\rho_{XY}|=1 ρXY=1等价于 P ( Y = a X + b ) = 1 ( a ≠ 0 ) P(Y=aX+b)=1(a≠0) P(Y=aX+b)=1a=0

  6. 独立与不相关之间的关系
    独立,必然不相关,反之不对。
    若X,Y不相关,则等价于:
    ρ X Y = 0 \rho_{XY}=0 ρXY=0
    C o v ( X , Y ) = 0 Cov(X,Y)=0 Cov(X,Y)=0
    E X Y = E X E Y EXY=EXEY EXY=EXEY
    D ( X + Y ) = D X + D Y D(X+Y)=DX+DY D(X+Y)=DX+DY
    二维正态,独立与不相关等价

  7. 线性组合的相关系数:
    U = a 1 X + b 1 , V = a 2 X + b 2 , 则 ρ U V = a 1 a 2 ∣ a 1 a 2 ∣ ρ X Y U=a_1X+b_1,V=a_2X+b_2,则\rho_{UV}=\frac{a_1a_2}{|a_1a_2|}\rho_{XY} U=a1X+b1,V=a2X+b2,ρUV=a1a2a1a2ρXY

  8. X,Y的相关系数是标准化随机变量 X ∗ , Y ∗ X^*,Y^* X,Y的协方差,其中 X ∗ = X − E X D X , Y ∗ = Y − E Y D Y X^*=\frac{X-EX}{\sqrt{DX}},Y^*=\frac{Y-EY}{\sqrt{DY}} X=DX XEX,Y=DY YEY

  9. 若X和Y存在函数关系,则不相互独立

  10. ρ X Y = 0 \rho_{XY}=0 ρXY=0,则称X与Y不相关,即没有线性关系,但可能有其他关系。若X,Y独立(啥关系都没),则X与Y不相关(线性关系)

  11. 大数定理:
    切比雪夫不等式: P { ∣ X − E X ∣ > = ε } < = D X ε 2 P{\{|X-EX|>=\varepsilon}\}<=\frac{DX}{\varepsilon ^2} P{XEX>=ε}<=ε2DX
    切比雪夫不等式可估计[EX- ε \varepsilon ε,EX+ ε \varepsilon ε]之间的概率
    依概率收敛: lim ⁡ n − > i n f P { ∣ X n − a ∣ } = 1 \lim_{n->inf}P\{|X_n-a|\}=1 limn>infP{Xna}=1
    大数定律: lim ⁡ n − > i n f p { ∣ 1 n Σ i = 1 n X i − a n ∣ < ε } = 1 \lim_{n->inf}p\{|\frac{1}{n}\Sigma_{i=1}^n X_i-a_n|<\varepsilon\}=1 limn>infp{n1Σi=1nXian<ε}=1

  12. 三个常用的大数定理
    切比雪夫大数定理:
    { X n X_n Xn}相互独立同分布 E X i , D X i EX_i,DX_i EXi,DXi存在,则: lim ⁡ n − > i n f { ∣ 1 n Σ i = 1 n X i − μ ∣ < ε } = 1 \lim_{n->inf}\{|\frac{1}{n}\Sigma_{i=1}^nX_i-\mu|<\varepsilon\}=1 limn>inf{n1Σi=1nXiμ<ε}=1
    独立分布的随机变量的算数平均值集中在期望值附近
    伯努利大数定律:
    n A n_A nA是n次独立重复试验,事件A发生的次数,p是A在一次实验中发生的概率。 lim ⁡ n − > i n f p { ∣ n A n − p ∣ < ε } = 1 \lim_{n->inf}p\{|\frac{n_A}{n}-p|<\varepsilon\}=1 limn>infp{nnAp<ε}=1
    频率依概率收敛于概率
    辛钦大数定律:
    { X n X_n Xn}独立同分布的随机变量序列, E X i = μ EX_i=\mu EXi=μ,则:
    lim ⁡ n − > i n f p { ∣ 1 n Σ i = 1 n X i − μ ∣ < ε } = 1 \lim_{n->inf}p\{|\frac{1}{n}\Sigma_{i=1}^n X_i-\mu|<\varepsilon\}=1 limn>infp{n1Σi=1nXiμ<ε}=1

  13. 常用中心极限定理:
    独立同分布的中心极限定理:
    X n X_n Xn是独立同分布的随机变量序列,且 E X i = μ , D X i = σ 2 EX_i=\mu,DX_i=\sigma^2 EXi=μ,DXi=σ2,则: Y n = Σ i = 1 n X i − n μ n σ 符 合 N ( 0 , 1 ) Y_n=\frac{\Sigma_{i=1}^nX_i -n\mu}{\sqrt{n} \sigma} 符合 N(0,1) Yn=n σΣi=1nXinμN(01)
    拉普拉斯定理:
    设随机变量 X n X_n Xn~ B ( n , p ) B(n,p) B(n,p), X n = Y n − n p n p ( 1 − p ) X_n=\frac{Y_n-np}{\sqrt{np(1-p)}} Xn=np(1p) Ynnp符合正态分布

数理统计
  1. 统计量:
    样本均值: X ‾ = Σ X i n \overline{X}=\frac{\Sigma{X_i}}{n} X=nΣXi
    样本方差: S 2 = Σ ( X i − X ‾ ) 2 n − 1 S^2=\frac{\Sigma{(X_i-\overline{X})^2}}{n-1} S2=n1Σ(XiX)2

  2. 正态总体下的样本均值的分布:
    E X ‾ = μ E\overline{X}=\mu EX=μ
    D X ‾ = σ 2 n D\overline{X}=\frac{\sigma^2}{n} DX=nσ2
    E ( S 2 ) = σ 2 E(S^2)=\sigma^2 E(S2)=σ2
    a ‾ \overline{a} a

  3. Σ i = 1 n ( x i − x ‾ ) = Σ i = 1 n ( x i 2 ) − n x ‾ 2 \Sigma_{i=1}^{n}(x_i- \overline{x})=\Sigma_{i=1}^{n}(x_i^2)-n\overline{x}^2 Σi=1n(xix)=Σi=1n(xi2)nx2

正态总体下的抽样分布:
  1. 设总体 X X X~ N ( μ , σ 2 ) , X i N(\mu,\sigma^2),Xi N(μ,σ2),Xi为X的简单随机样本,则:
    ( n − 1 ) S 2 σ 2 = Σ ( X i − X ‾ ) 2 σ 2 \frac{(n-1)S^2}{\sigma^2}=\frac{\Sigma(X_i-\overline{X})^2}{\sigma^2} σ2(n1)S2=σ2Σ(XiX)2~ X 2 ( n − 1 ) X^2(n-1) X2(n1)
    X ‾ \overline{X} X S 2 S^2 S2相互独立
  2. X ‾ − μ S / n \frac{\overline{X}-\mu}{S/\sqrt{n}} S/n Xμ~ t ( n − 1 ) t(n-1) t(n1)
  3. 设总体 X X X~ N ( μ 1 , σ 1 2 ) N(\mu_1,\sigma_1^2) N(μ1,σ12), Y Y Y~ N ( μ 2 , σ 2 2 ) N(\mu_2,\sigma_2^2) N(μ2,σ22),且X与Y独立,若 X i , Y i X_i,Y_i Xi,Yi分别来自X与Y样本,则:
    Σ j = 1 m ( Y j − Y ‾ ) 2 ( m − 1 ) σ 2 2 / Σ j = 1 n ( X i − X ‾ ) 2 ( n − 1 ) σ 1 2 \frac{\Sigma_{j=1}^{m}({Y_j}-\overline{Y})^2}{(m-1)\sigma_2^2}/\frac{\Sigma_{j=1}^{n}({X_i}-\overline{X})^2}{(n-1)\sigma_1^2} (m1)σ22Σj=1m(YjY)2/(n1)σ12Σj=1n(XiX)2~ F ( m − 1 , n − 1 ) F(m-1,n-1) F(m1,n1)
    F = S 1 2 / σ 1 2 S 2 2 / σ 2 2 F=\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} F=S22/σ22S12/σ12~ F ( n − 1 , m − 1 ) F(n-1,m-1) F(n1,m1)
分位数的换算性质:
  1. 换算:上分位置 α \alpha α=下分位 ( 1 − α ) (1-\alpha) (1α)
  2. 对称性: N ( 0 , 1 ) N(0,1) N(01) t ( n ) t(n) t(n)有对称性
    u 1 − α = − u α u_{1-\alpha}=-u_{\alpha} u1α=uα
    X 2 与 F X^2与F X2F分布具有非对称性,由非负性得:
    0 < X 1 − α 2 ( n ) < X α 2 ( n ) 0<X_{1-\alpha}^2(n)<X_{\alpha}^2(n) 0<X1α2(n)<Xα2(n)
    0 < F 1 − α ( n , m ) < F α ( n , m ) 0<F_{1-\alpha}(n,m)<F_{\alpha}(n,m) 0<F1α(n,m)<Fα(n,m)
  3. F 1 − α ( n , m ) ∗ F α ( m , n ) = 1 F_{1-\alpha}(n,m)*F_{\alpha}(m,n)=1 F1α(n,m)Fα(m,n)=1
可加性(二伯正码)

前提:X,Y相互独立
二项分布;泊松分布;正态分布;伽马分布

假设检验
  1. 当规定出现U>3时候,否定假设 H 0 H_0 H0,接受 H 1 H_1 H1,则第一类假设 p 1 = P ( U > 3 ∣ H 0 ) p_1=P(U>3|H_0) p1=P(U>3H0),第二类假设 p 2 = P ( U > 3 ∣ H 1 ) p_2=P(U>3|H_1) p2=P(U>3H1)
    解释:第一类错误:错杀好人;第二类错误:放走坏人
  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值