链接:http://poj.org/problem?id=1664
题意:略略略
思路:递归
分析:
问题:f(m,n);
划分为几个子问题:有m个苹果,n个盘子,首先就要思考到这个盘子与苹果的数量对结果会有影响,其次,空盘子的数量也有影响。
(1)若m<n,盘子多苹果少,至少有n-m个空盘子,由于顺序不影响,所有f(m,n)=f(m,m);
(2)若m>=n,苹果多,可分为:有空盘子和没有空盘子。
如果有空盘子,那么至少有一个空盘子,则此分支方案数为f(m,n-1);
对立的情况就是没有空盘子,也就是说n个盘子每个盘子至少有一个苹果,递归下去就是要用m-n个苹果放到n个盘子,分支方案数为f(m-n,n);
解答树收敛条件:
if(m==0||n==1)return 1;
如果没有苹果了,那就分完了,剩下的都是空盘的,如果没有盘子了就分完了
总结:这类题目一般如果直接模拟会很麻烦,但是如果用递归分成几个子问题,就很优秀
代码:
#include<cstdio>
#include<algorithm>
using namespace std;
int f(int m,int n){
if(m==0||n==1)
return 1;
if(m<n)
return f(m,m);
else
return f(m,n-1)+f(m-n,n);
}
int main(){
int t;
scanf("%d",&t);
while(t--){
int m,n;
scanf("%d%d",&m,&n);
printf("%d\n",f(m,n));
}
}