[bzoj 1879] [Sdoi2009]Bill的挑战:状压DP,自创数学公式(?)

题意:给N个(1<=N<=15)含小写字母、?的长度不超过50的等长字符串,求有多少个含小写字母的字符串和恰好K个串匹配。?可匹配任意字符。

把它想简单一点就是一道状压DP。

网上看到的解法:设f[i][j]为恰好和集合j中字符串匹配的字符串数目,从f[i-1][j]转移即可。直接跑时间复杂度是 O(L2n|Σ|n) ,用 O(L|Σ|n) 时间预处理每个位置每个字符能匹配哪些字符串,DP的时间可优化为 O(L2n|Σ|) 。其实不太明白为什么要状压,预处理之后暴搜应该就可以,而且理论上时间更优 QAQ

看到“恰好”,我的想法是用能匹配K个串的数目减去能匹配(K+1)个串的数目,定义f[i][j]为和集合j中字符串匹配的字符串数目。因为没想到预处理……

我想用容斥原理,然后走上了推导数学公式(手动打表找规律)的不归路,方法是用容斥原理暴力地展开,用对称性简化计算。

现在,我们问题是:用交集的元素数目表示在n个集合中出现k次的元素数目/恰在n个集合出现k次的元素数目。

前者没有发现明显的规律,计算后者各个项的系数时出现了正整数、三角形数的前几项。画出Pascal三角形,归纳出以下公式:

|1j1<j2<<jinAj1Aj2Ajk|=i=kn(1)ikCki1j1<j2<<jin|Aj1Aj2Aji|

然后莫名地AC了……

时间复杂度 O(L2n)

先留个坑,有空来证。

#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
const int MAX_N = 15, MAX_L = 50, M = 1000003;
char s[MAX_N][MAX_L+2], g[MAX_L+1][1<<MAX_N];
int N, K, f[MAX_L+1][1<<MAX_N], C[MAX_N+1][MAX_N+1], t[MAX_N+1];

template<typename T>
inline int count(T x)
{
    const static int c[] = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
    int ans = 0;
    for (int i = 0; i < sizeof(T)*2; ++i, x >>= 4)
        ans += c[x & 0xf];
    return ans;
}

inline int log2(int x)
{
    int r = 0;
    const static int mask[] = {0xff00, 0xf0, 0xc, 0x2};
    for (int i = 0, a = 8; i < 4; ++i, a >>= 1)
        if (x & mask[i]) {
            r += a;
            x >>= a;
        }
    return r;
}

int solve()
{
    int l = strlen(s[0]+1);

    for (int i = 1; i <= l; ++i)
        for (int j = 1; j < (1<<N); ++j) {
            int b = j & -j, x = j ^ b, k = log2(b);
            if (!g[i][x]) {
                f[i][j] = g[i][j] = 0;
                continue;
            }
            char c = s[k][i];
            if (g[i][x] == '?')
                g[i][j] = c;
            else if (c == '?')
                g[i][j] = g[i][x];
            else if (g[i][x] != c) {
                f[i][j] = g[i][j] = 0;
                continue;
            } else
                g[i][j] = c;

            if (g[i][j] == '?')
                f[i][j] = f[i-1][j]*26%M;
            else
                f[i][j] = f[i-1][j];
        }

    memset(t, 0, sizeof(t));
    for (int i = 1; i < (1<<N); ++i)
        t[count(i)] += f[l][i];

    int r = 0;
    for (int i = K, sgn = 1; i <= N; ++i, sgn *= -1)
        (r += (ll) sgn * C[i][K] * t[i] % M + M) %= M;

    return r;
}

int main()
{
    for (int i = 0; i < (1<<MAX_N); ++i)
        f[0][i] = 1;
    for (int i = 1; i <= MAX_L; ++i)
        g[i][0] = '?';

    for (int i = 1; i <= MAX_N; ++i) {
        C[i][0] = C[i][i] = 1;
        for (int j = 1; j < i; ++j)
            C[i][j] = (C[i-1][j-1] + C[i-1][j]) % M;
    }

    int T;
    scanf("%d", &T);
    while (T--) {
        scanf("%d %d", &N, &K);
        for (int i = 0; i < N; ++i)
            scanf("%s", s[i]+1);
        printf("%d\n", solve());
    }
    return 0;
}   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值