[BZOJ1879][Sdoi2009]Bill的挑战(状压DP)

状压DP。定义状态 f[i][S] f [ i ] [ S ] 表示前 i i 位,能匹配的字符串集合为S的方案数。
先预处理出 g[i][c] g [ i ] [ c ] ,表示在第 i i 位选用字符c,能匹配的字符串集合。
i i 转移到i+1,即枚举第 i+1 i + 1 个字符:
f[i+1][Sg[i+1][c]]+=f[i][j] f [ i + 1 ] [ S ∩ g [ i + 1 ] [ c ] ] + = f [ i ] [ j ]
最后答案就是 |S|=Kf[m][S] ∑ | S | = K f [ m ] [ S ]
代码:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int ZZQ = 1e6 + 3, N = 55, C = (1 << 15) + 5, L = 30, E = 20;
int n, K, m, Cm, com[N][L], f[N][C];
char s[E][N];
void work() {
    int i, j, k; scanf("%d%d", &n, &K); Cm = 1 << n;
    for (i = 1; i <= n; i++) scanf("%s", s[i] + 1);
    m = strlen(s[1] + 1); for (i = 0; i <= m; i++) {
        for (j = 0; j < 26; j++) com[i][j] = 0;
        for (j = 0; j < Cm; j++) f[i][j] = 0;
    }
    for (i = 1; i <= m; i++) for (j = 0; j < 26; j++) for (k = 1; k <= n; k++)
        if (s[k][i] == j + 'a' || s[k][i] == '?')
            com[i][j] = com[i][j] | (1 << k - 1); f[0][Cm - 1] = 1;
    for (i = 0; i < m; i++) for (j = 0; j < Cm; j++) if (f[i][j])
    for (k = 0; k < 26; k++)
        (f[i + 1][j & com[i + 1][k]] += f[i][j]) %= ZZQ;
    int ans = 0; for (j = 0; j < Cm; j++) {
        int cnt = 0; for (i = 0; i < n; i++) cnt += (j >> i) & 1;
        if (cnt == K) ans = (ans + f[m][j]) % ZZQ;
    }
    printf("%d\n", ans);
}
int main() {
    int T; cin >> T;
    while (T--) work();
    return 0;
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图求从 $(1,1)$ 到 $(n,n)$ 的所有路径,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值