我的Ollama+openWebUI部署笔记

前提是电脑已经安装过python、cuda12.1之类的。

1、下载安装包
下载地址:https://ollama.com/download

大约200多MB,下载后直接安装。

2、安装
双击安装包直接安装就好,安装好后会自动运行,如下界面:

3、添加环境变量,模型路径,如下所示。
(F:\LLM\ollama_models文件夹就是你将来存放模型的地方。)

4、下载聊天大模型
下载地址:点击ollama官网右上角的"model",进入以下界面,
或直接打开网址:
https://ollama.com/library
里面有很多ollama支持的模型。

我选择的是yi-9b.

在cmd窗口输入:ollama run yi:9b

<think>我们正在讨论的是如何在本地部署大语言模型(如DeepSeek)并实现自定义功能,使用Ollama作为基础框架,并结合Chatbox AI或Cherry Studio作为前端交互工具。 根据引用[^1]的信息,我们知道可以通过Cherry Studio来连接本地的Ollama服务(地址为http://localhost:11434/v1/),然后添加模型。 但是,用户的问题还涉及如何实现自定义功能,这通常包括模型微调、添加私有知识库、扩展功能等。 步骤分解: 1. 安装Ollama部署DeepSeek模型(或其他模型)到本地。 2. 配置前端工具(Chatbox AI或Cherry Studio)连接Ollama服务。 3. 实现自定义功能,可能包括: - 私有知识库的接入(如通过Cherry Studio的私有知识库功能) - 自定义提示词工程 - 模型微调(可能需要额外的步骤) 由于引用中只提到了Cherry Studio的设置,而用户还提到了Chatbox AI,因此需要分别说明。 具体步骤: 第一步:安装Ollama并下载DeepSeek模型 - 前往Ollama官网(https://ollama.com/)下载并安装Ollama- 安装完成后,打开终端(或命令提示符),运行命令下载DeepSeek模型(目前Ollama支持的DeepSeek模型有deepseek-coder等): ollama run deepseek-coder:6.7b 注意:模型名称和版本需要根据实际情况调整,可以到Ollama的模型库(https://ollama.com/library)查找。 第二步:配置前端工具连接Ollama - 对于Cherry Studio: 1. 打开Cherry Studio,进入设置。 2. 在Ollama设置项中输入Ollama的API地址:http://localhost:11434/v1/ 3. 添加后,即可在模型列表中选择本地运行的DeepSeek模型。 - 对于Chatbox AI: 1. 下载并安装Chatbox AI(https://chatboxai.app/)。 2. 打开Chatbox,在设置中找到模型设置,选择“自定义OpenAI API”。 3. 在API地址中填入:http://localhost:11434/v1/ 4. 在模型名称中填入你在Ollama中运行的模型名称(如deepseek-coder:6.7b)。 5. 保存设置,即可使用。 第三步:实现自定义功能 - 私有知识库:Cherry Studio内置了私有知识库功能。你可以在Cherry Studio中上传文档(如PDF、Word等),然后它会在与模型交互时利用这些文档作为上下文。具体操作是在Cherry Studio中创建知识库并上传文件。 - 自定义提示词:在Chatbox或Cherry Studio中,你可以设置系统提示词(system prompt)来指导模型的行为,例如:“你是一个专业的编程助手,请用Python回答问题”。 - 模型微调:如果需要对模型进行微调,Ollama目前支持通过Modelfile来创建自定义模型。你可以基于已有的模型,通过额外的训练数据来微调。具体步骤: 1. 准备训练数据(格式为文本文件)。 2. 创建一个Modelfile,例如: FROM deepseek-coder:6.7b SYSTEM "你是一个专门回答数学问题的助手" # 可以添加更多的参数设置,或者使用微调数据 # 微调数据可以通过TRAIN指令指定,但注意Ollama的微调功能还在发展中,可能需要参考官方文档。 3. 构建并运行自定义模型: ollama create my-model -f ./Modelfile ollama run my-model 注意:模型微调需要较大的计算资源,并且需要准备高质量的数据集。 另外,如果要实现更复杂的自定义功能,可能需要编写中间件(如使用Ollama的API)来扩展功能,例如: - 使用Ollama的API(http://localhost:11434/api/generate)进行模型调用,然后结合其他工具(如LangChain)来构建私有知识库的检索增强生成(RAG)系统。 引用[^1]中提到了Cherry Studio的设置,但未涉及其他细节。因此,我们主要依据Ollama和前端工具的常规设置方法进行说明。 总结:通过Ollama部署本地模型,然后通过前端工具连接,再结合私有知识库和提示词工程,可以实现基本的自定义功能。对于更高级的自定义,可能需要开发额外的中间件或使用LangChain等框架。 下面,我们生成相关问题。</think>### 在本地部署DeepSeek大模型并实现自定义功能 以下是利用Ollama结合Chatbox AI/Cherry Studio部署DeepSeek大语言模型的完整流程: --- #### **第一步:安装Ollama部署DeepSeek模型** 1. **安装Ollama** - 访问[Ollama官网](https://ollama.com/)下载对应操作系统的安装- 终端验证安装:`ollama --version` 2. **下载DeepSeek模型** ```bash # 选择需要的模型版本(以7B参数版为例) ollama pull deepseek-coder:6.7b ``` 3. **启动模型服务** ```bash ollama run deepseek-coder:6.7b ``` 服务默认运行在 `http://localhost:11434` --- #### **第二步:配置前端工具** ##### **选项1:Cherry Studio(推荐私有知识库)** 1. 打开Cherry Studio,进入设置 > Ollama配置 2. 添加本地API地址:`http://localhost:11434/v1/` [操作示意图参考^1] 3. 启用"私有知识库"功能: - 上传PDF/Word/TXT等文档 - 设置知识库检索参数(如相似度阈值) 4. 创建自定义工作流: ```python # 示例:文档摘要工作流 def document_summary(file): context = load_knowledge_base(file) # 从私有知识库加载 prompt = f"基于以下上下文生成摘要:{context}" return ollama.generate(prompt) ``` ##### **选项2:Chatbox AI(轻量级方案)** 1. 安装[Chatbox](https://chatboxai.app/) 2. 配置自定义API: ```json { "API_URL": "http://localhost:11434/v1/chat/completions", "Model": "deepseek-coder:6.7b" } ``` 3. 在"系统提示词"区域添加自定义指令: ``` 你是一个编程助手,需遵循规则: 1. 所有代码用```标记 2. 优先使用Python解答 ``` --- #### **第三步:实现自定义功能** 1. **私有知识库增强** - 在Cherry Studio上传公司文档/个人笔记 - 修改`~/.ollama/config.json`添加知识库路径: ```json "knowledge_base": ["/path/to/your/docs"] ``` 2. **API集成开发** 使用Ollama的HTTP API构建自定义应用: ```python import requests def ask_ollama(question): response = requests.post( "http://localhost:11434/api/generate", json={ "model": "deepseek-coder:6.7b", "prompt": question, "stream": False } ) return response.json()["response"] # 调用示例 print(ask_ollama("用Python实现快速排序")) ``` 3. **模型微调(高级)** ```bash # 1. 准备训练数据(train.jsonl) {"text": "<指令>解释量子计算</指令><回答>..."} # 2. 创建Modelfile FROM deepseek-coder:6.7b TRAIN ./train.jsonl # 3. 微调模型 ollama create my-custom-model -f Modelfile ``` --- #### **常见问题解决** - **端口冲突**:修改Ollama端口 `ollama serve --port 11435` - **显存不足**:添加量化参数 `ollama run deepseek-coder:6.7b --num_gpu 0` - **知识库未生效**:检查Cherry Studio的文档索引状态,重建索引 > 部署效果验证:向模型提问私有知识库特有内容,观察是否返回基于定制知识的回答[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值