题目
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]
示例 1:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出: 3
解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
示例 2:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。
思路
1.公共祖先肯定存在
2.判断节点是在左子树还是右子树
该题需要复习
实现
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if (!root || root == p || root == q) {
return root;
}
// 左子树找p或q
TreeNode* left_res = lowestCommonAncestor(root->left, p, q);
// 右子树找p或q
TreeNode* right_res = lowestCommonAncestor(root->right, p, q);
// 左子树没找到p和q,公共祖先肯定在右子树
if (!left_res) {
return right_res;
}
// 右子树没找到p和q,公共祖先肯定在左子树
if (!right_res) {
return left_res;
}
return root;
}
};