题目
给定 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 n 的值至少为 2。
图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例:
输入: [1,8,6,2,5,4,8,3,7]
输出: 49
思路
1.设置两指针i,j分别位于容器壁两端,逐渐向中间收缩并记录最大值;
2.每次选定围成水槽两板height[i], height[j]中较小的对应指针,向中间收缩,这是因为水槽的高度由两板中的短板决定,每次收缩,都会导致水槽底边宽度-1。因此,若想找到比当前最大值更大的水槽,那么水槽的短板高必须要高于上一个水槽短板高,而只有向内移动短板,有可能达成这一条件(若移动长板,下个水槽的面积一定小于当前水槽面积)。
扩展:若要找面积最小的水槽,直接找高度height最小的板子,并且宽度为1即可。
实现
class Solution {
public:
int maxArea(vector<int>& height) {
int i = 0;
int j = height.size() - 1;
int max = (j - i) * ((height[i] < height[j]) ? height[i] : height[j]);
while (i < j ) {
if (height[i] < height[j]) {
i++;
} else {
j--;
}
int temp = (j - i) * ((height[i] < height[j]) ? height[i] : height[j]);
if (max < temp) {
max = temp;
}
}
return max;
}
};