leetcode11. 盛最多水的容器

题目

给定 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

说明:你不能倾斜容器,且 n 的值至少为 2。

图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。

示例:

输入: [1,8,6,2,5,4,8,3,7]
输出: 49

思路

1.设置两指针i,j分别位于容器壁两端,逐渐向中间收缩并记录最大值;
2.每次选定围成水槽两板height[i], height[j]中较小的对应指针,向中间收缩,这是因为水槽的高度由两板中的短板决定,每次收缩,都会导致水槽底边宽度-1。因此,若想找到比当前最大值更大的水槽,那么水槽的短板高必须要高于上一个水槽短板高,而只有向内移动短板,有可能达成这一条件(若移动长板,下个水槽的面积一定小于当前水槽面积)。

扩展:若要找面积最小的水槽,直接找高度height最小的板子,并且宽度为1即可。

实现

class Solution {
public:
    int maxArea(vector<int>& height) {
        int i = 0;
        int j = height.size() - 1;
        int max = (j - i) * ((height[i] < height[j]) ? height[i] : height[j]);
        while (i < j ) {
            if (height[i] < height[j]) {
                i++;
            } else {
                j--;
            }
            int temp = (j - i) * ((height[i] < height[j]) ? height[i] : height[j]);
            if (max < temp) {
                max = temp;
            }
        }
        return max;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值