概率与统计问题解析:贝叶斯、高斯分布与模型比较

1、设H是取值范围为{1, …, K}的离散随机变量,e1和e2分别是另外两个随机变量E1和E2的观测值。假设我们要计算向量⃗P(H|e1, e2) = (P(H = 1|e1, e2), …, P(H = K|e1, e2))。以下哪几组数值足以进行计算?i. P(e1, e2)、P(H)、P(e1|H)、P(e2|H) ii. P(e1, e2)、P(H)、P(e1, e2|H) iii. P(e1|H)、P(e2|H)、P(H)

需要根据贝叶斯规则进行计算和判断。利用贝叶斯公式

$$
P(H|e1, e2) = \frac{P(e1, e2|H)P(H)}{P(e1, e2)}
$$

对每组数值进行分析,看是否能通过这些数值算出 $ P(H|e1, e2) $。

2、年度体检后,医生带来了坏消息和好消息。坏消息是你某项严重疾病检测呈阳性,且该检测准确率为99%(即患病时检测呈阳性的概率是0.99,未患病时检测呈阴性的概率也是0.99)。好消息是这是一种罕见疾病,每10000人中仅有1人患病。你实际患病的概率是多少?(请给出计算过程和最终结果)

计算实际患病的概率

本题可根据 贝叶斯公式 计算实际患病的概率。

设:

  • 事件 $ H = 1 $ 表示患病
  • 事件 $ H = 0 $ 表示未患病
  • 事件 $ Y = 1 $ 表示检测呈阳性

已知:

  • 先验概率:
  • $ p(H = 1) = \frac{1}{10000} = 0.0001 $
  • $ p(H = 0) = 1 - 0.0001 = 0.9999 $

  • 检测率:

  • 真阳性率(TPR):$ p(Y = 1|H = 1) = 0.99 $
  • 假阳性率(FPR):$ p(Y = 1|H = 0) = 0.01 $

根据 贝叶斯公式

$$
p(H = 1|Y = 1) = \frac{p(Y = 1|H = 1)p(H = 1)}{p(Y = 1|H = 1)p(H = 1) + p(Y = 1|H = 0)p(H = 0)}
$$

代入数值:

$$
p(H = 1|Y = 1) = \frac{0.99 \times 0.0001}{0.99 \times 0.0001 + 0.01 \times 0.9999}
$$

$$
= \frac{0.000099}{0.000099 + 0.009999} = \frac{0.000099}{0.010098} \approx 0.0098
$$

因此,实际患病的概率约为 0.98%

3、a. 检察官声称:“如果被告是无辜的,那么他拥有犯罪现场血型的概率只有1%。因此,他有99%的概率是有罪的”。这被称为检察官谬误。这个论点错在哪里?b. 辩护人声称:“犯罪发生在一个有800000人的城市里。大约有8000人会有这种血型。该证据仅表明被告有罪的概率为8000分之一,因此该证据无关紧要”。这被称为辩护人谬误。这个论点错在哪里?

a. 检察官谬误错在将在被告无辜的情况下出现特定血型这一证据的概率,直接等同于被告有罪的概率。实际上,要确定被告有罪的概率,需要考虑更多因素,运用概率推理综合分析,而不能简单从证据出现的概率得出有罪概率。

b. 辩护人谬误错在孤立看待血型证据,仅依据城市中拥有相同血型的人数来确定被告有罪概率。在实际案件里,还需结合其他证据和情况来综合判断,不能直接认定该证据无关紧要。

4、设X服从区间(-1, 1)上的均匀分布,且Y = X²。显然Y依赖于X(实际上,Y由X唯一确定)。然而,请证明X和Y的相关系数ρ(X, Y ) = 0。提示:若X服从区间(a, b)上的均匀分布,则E[X] = (a + b)/2,V [X] = (b - a)²/12。

本题可根据相关系数的定义
$$ \rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sqrt{V(X)V(Y)}} $$
证明 $\text{Cov}(X,Y) = 0$,进而得到 $\rho(X,Y) = 0$。

  1. 计算 $E[X]$
    已知 $X \sim U(-1,1)$,根据提示
    $$ E[X] = \frac{a + b}{2} $$
    其中 $a = -1$,$b = 1$,可得
    $$ E[X] = \frac{-1 + 1}{2} = 0 $$

  2. 计算 $E[XY]$
    因为 $Y = X^2$,所以 $XY = X \cdot X^2 = X^3$。
    对于均匀分布 $X \sim U(-1,1)$,其概率密度函数为
    $$ f(x) = \begin{cases}
    \frac{1}{2}, & -1 < x < 1 \
    0, & \text{其他}
    \end{cases} $$
    根据期望的定义
    $$ E[XY] = E[X^3] = \int_{-\infty}^{\infty} x^3 f(x) dx = \int_{-1}^{1} x^3 \cdot \frac{1}{2} dx $$
    由于被积函数 $x^3$ 是奇函数,在关于原点对称的区间 $[-1,1]$ 上积分值为 0,即
    $$ E[XY] = 0 $$

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值