目录
部署 InternLM2-Chat-1.8B 模型进行智能对话
实战:使用 Lagent 运行 InternLM2-Chat-7B 模型
课程学习地址:
轻松玩转书生·浦语大模型趣味 Demo_哔哩哔哩_bilibili
教程文档:
Tutorial/helloworld/hello_world.md at camp2 · InternLM/Tutorial · GitHub
部署 InternLM2-Chat-1.8B
模型进行智能对话
首先是环境配置
进入开发机后环境配置的命令为:
conda create -n demo python==3.10 -y
conda activate demo
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia
安装好后通过conda info可以查看虚拟环境的安装位置,可以看出全部都安装在/root的子目录下,因此不用担心下次重启还得重写配置虚拟环境的问题。
接着继续安装其它环境包:
pip install huggingface-hub==0.17.3
pip install transformers==4.34
pip install psutil==5.9.8
pip install accelerate==0.24.1
pip install streamlit==1.32.2
pip install matplotlib==3.8.3
pip install modelscope==1.9.5
pip install sentencepiece==0.1.99
下载 InternLM2-Chat-1.8B
模型
生成demo存放目录:
mkdir -p /root/demo
touch /root/demo/cli_demo.py
touch /root/demo/download_mini.py
cd /root/demo
将下面的代码拷贝到 download_mini.py 中
import os
from modelscope.hub.snapshot_download import snapshot_download
# 创建保存模型目录
os.system("mkdir /root/models")
# save_dir是模型保存到本地的目录
save_dir="/root/models"
snapshot_download("Shanghai_AI_Laboratory/internlm2-chat-1_8b",
cache_dir=save_dir,
revision='v1.1.0')
可以查看下载的内容
ls /root/models/Shanghai_AI_Laboratory/internlm2-chat-1_8b/
除了这个方法外其实也可以直接从huggingface这个地址下载
例如可以使用下面这个命令下载 config.json 文件
cd /root/models
wget https://huggingface.co/internlm/internlm2-chat-1_8b/resolve/main/config.json
其他文件的下载方法类似。
接着是运行cli_demo。将下面的代码拷贝进 cli_demo.py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name_or_path = "/root/models/Shanghai_AI_Laboratory/internlm2-chat-1_8b"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='cuda:0')
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='cuda:0')
model = model.eval()
system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""
messages = [(system_prompt, '')]
print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")
while True:
input_text = input("\nUser >>> ")
input_text = input_text.replace(' ', '')
if input_text == "exit":
break
length = 0
for response, _ in model.stream_chat(tokenizer, input_text, messages):
if response is not None:
print(response[length:], flush=True, end="")
length = len(response)
接着运行代码,并让模型输出一个300字的小故事
python /root/demo/cli_demo.py
这里本来想huggingface的pipeline
pipeline会自动加载用于指定任务的模型以及分词器,省去了配置tokenizer和model
from transformers import pipeline
pipe = pipeline("text-generation","/root/models/Shanghai_AI_Laboratory/internlm2-chat-1_8b",trust_remote_code=True)
response = pipe(["Hi, pls intro yourself", "Shanghai is"])
print(response)
但是报错了,提示该模型不支持从text-generation任务,挺奇怪的。
The model 'InternLM2ForCausalLM' is not supported for text-generation. Supported models are ['BartForCausalLM', 'BertLMHeadModel', 'BertGenerationDecoder', 'BigBirdForCausalLM', 'BigBirdPegasusForCausalLM', 'BioGptForCausalLM', 'BlenderbotForCausalLM', 'BlenderbotSmallForCausalLM', 'BloomForCausalLM', 'CamembertForCausalLM', 'LlamaForCausalLM', 'CodeGenForCausalLM', 'CpmAntForCausalLM', 'CTRLLMHeadModel', 'Data2VecTextForCausalLM', 'ElectraForCausalLM', 'ErnieForCausalLM', 'FalconForCausalLM', 'GitForCausalLM', 'GPT2LMHeadModel', 'GPT2LMHeadModel', 'GPTBigCodeForCausalLM', 'GPTNeoForCausalLM', 'GPTNeoXForCausalLM', 'GPTNeoXJapaneseForCausalLM', 'GPTJForCausalLM', 'LlamaForCausalLM', 'MarianForCausalLM', 'MBartForCausalLM', 'MegaForCausalLM', 'MegatronBertForCausalLM', 'MistralForCausalLM', 'MptForCausalLM', 'MusicgenForCausalLM', 'MvpForCausalLM', 'OpenLlamaForCausalLM', 'OpenAIGPTLMHeadModel', 'OPTForCausalLM', 'PegasusForCausalLM', 'PersimmonForCausalLM', 'PLBartForCausalLM', 'ProphetNetForCausalLM', 'QDQBertLMHeadModel', 'ReformerModelWithLMHead', 'RemBertForCausalLM', 'RobertaForCausalLM', 'RobertaPreLayerNormForCausalLM', 'RoCBertForCausalLM', 'RoFormerForCausalLM', 'RwkvForCausalLM', 'Speech2Text2ForCausalLM', 'TransfoXLLMHeadModel', 'TrOCRForCausalLM', 'XGLMForCausalLM', 'XLMWithLMHeadModel', 'XLMProphetNetForCausalLM', 'XLMRobertaForCausalLM', 'XLMRobertaXLForCausalLM', 'XLNetLMHeadModel', 'XmodForCausalLM'].
部署实战营优秀作品 八戒-Chat-1.8B
模型
激活虚拟环境:demo,接着克隆仓库代码到本地
cd /root/
git clone https://gitee.com/InternLM/Tutorial -b camp2
# git clone https://github.com/InternLM/Tutorial -b camp2
cd /root/Tutorial
运行Chat-八戒Demo的模型相关文件下载程序:
python /root/Tutorial/helloworld/bajie_download.py
运行Chat-八戒Demo:
streamlit run /root/Tutorial/helloworld/bajie_chat.py --server.address 127.0.0.1 --server.port 6006
Streamlit 是一个用于快速创建数据应用程序的 Python 库。运行上述命令后,Streamlit 会启动一个 Web 服务器,并在指定的地址和端口(这里是
127.0.0.1:6006
)上执行行bajie_chat.py
编写的应用程序。
下面代码是将开发机的6006端口映射为本地的6006端口,因此我们就可以通过本地浏览器轻松访问。
ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p <your port>
部署结果如下:
实战:使用 Lagent
运行 InternLM2-Chat-7B
模型
这里的部署过程和八戒-Chat类似,因此就直接贴图了
实战:实践部署 浦语·灵笔2
模型
熟悉的味道,同样的配方。很快啊,直接ctrl-C和ctrl-V。
运行过程中报了个错:
查看了一下,utils.py与gradio_demo_composition.py都在examples文件夹下,因此直接import utils即可,修改代码后便可以成功运行啦
提交后创作过程没办法中断挺难受的,后面的图片理解也一样。
作业
1. 结营作业
使用 InternLM2-Chat-1.8B
模型生成 300 字的小故事
使用书生·浦语 Web 和浦语对话,和书生·浦语对话,并找到书生·浦语 1 处表现不佳的案例(比如指令遵循表现不佳的案例)
这里测试了模型的翻译、情感分类以及数学计算任务。可以看出里面的数学计算结果是完全错误的。
2. 进阶作业
(1)熟悉 huggingface
下载功能,使用 huggingface_hub
python 包,下载 InternLM2-Chat-7B
的 config.json
文件到本地(需截图下载过程)
下载命令可以从官网提供的文档找到:https://huggingface.co/docs/hub/en/models-adding-libraries#download-files-from-the-hub
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="internlm/internlm2-chat-7b", filename="config.json",cache_dir="/root/models/Shanghai_AI_Laboratory/internlm2-chat-7b")
用find命令查看下载文件位置
(2)完成 浦语·灵笔2
的 图文创作
及 视觉问答
部署(需截图)
(3)完成 Lagent
工具调用 数据分析
Demo 部署