算法笔记(七)—— 图的相关知识及算法

文章介绍了图的两种主要存储方式——邻接表和邻接矩阵,并详细阐述了图的宽度优先遍历和深度优先遍历算法。接着讨论了拓扑排序在有向无环图中的应用,以及无向图生成最小生成树的K算法和P算法。最后提到了Dijkstra算法在寻找最短路径时的条件和步骤。
摘要由CSDN通过智能技术生成

图的存储方式

1. 邻接表(记录关于某点的直接相邻点)

2. 邻接矩阵(一定是正方形的矩阵,对点进行编号,点到点的权值由距震中的值表示,无直接相连记为正无穷)

图的模板

unordered_map<int,Node>

unordered_set<Edge>

Node类:值、入度、出度、点发散出去的边连接的邻居、属于该点的边

Edge类:权值(距离)、起始点(from)、终止点(to)

图的宽度优先遍历

使用unordered_set来进行去重,放置重复点进队列

 

图的深度优先遍历

 

拓扑排序

有向无环图,先处理入度为0的点,然后将该点及其影响擦掉,继续寻找入度为0的点,周而复始。

无向图生成最小生成树(K算法 P算法)

保证连通性且整体边权值最小

K算法(从边的角度出发)

1. 对所有边排序,从最小开始考虑

2. 如果加上该边没有形成环则加上,若形成环则考虑下一条边

怎么考虑会不会形成环:假设所有点一开始自己是个集合(都不连通),判断是否有环,看一条边的from和to在不在一个集合,若不在将两个点所在集合合并。

P算法

1. 所有边都被锁定

2. 从某点出发,将该点直接相连的所有边解锁,选权值最小的边(且左右两侧不在一个模型内),将邻点加入,周而复始。

Dijkstra算法(要求没有累加权值为负数的环)

规定出发点 ,该点到所有点的最短距离

1. 初始化,到自己0,到别的点正无穷

2. 从当前最小值对应的点出发,看其所有的边,发现了更短的距离则改写

3. 周而复始即可,直到所有点都作为出发点被遍历到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值