贝叶斯滤波与卡尔曼滤波

第三讲.贝叶斯滤波的三大概率

在这里插入图片描述

第四讲.连续随机变量的贝叶斯公式

似然概率
在这里插入图片描述

第六讲.随机过程的贝叶斯滤波

在这里插入图片描述
正如上图所示,贝叶斯滤波的缺点:无穷积分,大多数情况下无解析解,所以对这个无穷积分需要有两种解决办法,一个是作假设(高斯分布,积分就好积了,另一个是数值积分)
因此,正如博主所说,贝叶斯滤波是一个思想,该思想应用到KF,EKF,UKF,PF

KF那五个公式

卡尔曼都是期望和方差
由上一个时刻的期望和方差,推出这个时刻期望和方差的先验(预测值,两个公式)

由这个时刻期望和方差的先验再推出这个时刻期望和方差的后验(又两个公式)

再加一个卡尔曼增益(一个公式)

第六讲笔记如下:

引出贝叶斯滤波基于哪些假设,分为几个步骤

通过状态方程和观测方程如何递推

在这里插入图片描述
##### 分两步,预测步与更新步
在这里插入图片描述
在这里插入图片描述

贝叶斯滤波总结以及针对缺点如何改进

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值