原文链接:https://blog.csdn.net/chen8766250/article/details/52416195
阿里面试题(车牌摇号问题)
题目大意:由于北京车牌紧张,如果需要车牌,需要在每月中旬进行摇号来获得车牌,获得车牌的概率由下面式子决定 money/100000. (money就是摇号时支付的预约金),如果摇中,与预约金用来买车牌,如果没有摇中,这预约金退回。如果你希望在6个月中摇到车牌,问在规定的时间摇到车牌,最少的期望金额是多少?
这是原题的描述,感觉这题是有问题的,因为无论多少次,概率都不可能是百分之百,只能无限趋近于100%。假设以40%为例,第一次不中概率是60%,第二次还不中概率是36%,第二次还不中概率是0.6*0.6*0.6=21.6%,无论多少次,只能趋近于0,但是不中的概率不会等于0。所以这题感觉改成6次摇到车牌的概率超过90%更为合适。(仅限于文字对题目的描述,不排除有其他限定条件没列出来导致我理解错误)
所以我们改一下题目:
由于北京车牌紧张,如果需要车牌,需要在每月中旬进行摇号来获得车牌,获得车牌的概率由下面式子决定 money/100000. (money就是摇号时支付的预约金),如果摇中,与预约金用来买车牌,如果没有摇中,这预约金退回。如果你希望在6个月中摇到车牌的概率超过90%,问在规定的时间摇到车牌,最少的期望金额是多少?
首先我们明确一个概念,每次预约金是否需要一样?原题描述是不一样的,但是我认为一样更为合适。
比如六次我们出价30000,32000,32000,30000,30000。则最少的预约金是32000。我们如果把30000的那几次改成32000,是否概率会更高呢?那自然是肯定的。所以我认为六次的金额应该是一样的。
所以六次的概率应该是这样的,假设预约金是Y,则六次中的概率是:
第一次:Y/100000
第二次:Y/100000*(100000-Y)/100000
第三次:Y/100000*(100000-Y)/100000*(100000-Y)/100000
第四次:Y/100000*(100000-Y)/100000*(100000-Y)/100000*(100000-Y)/100000
第N次:Y/100000*((100000-Y)/100000)的n-1次方
六次想加的和超过90%即可。
按照这个思路,我们先写一份效率最低的代码进行实现:
/**
* @param inf 上限金额,这里是100000
* @param times 次数
* @return
*/
public int getMinPirce(int inf, int times) {
List<Integer> list = new ArrayList<>();
for (int price = 1; price < inf; price++) {
int probability = 0;
for (int i = 0; i < times; i++) {
int failprobal = 100;
for (int k = 0; k < i; k++) {
failprobal = failprobal * (inf - price) / inf;//计算前面几次不中的概率
}
// 调试用
// if (price == 50000) {
// System.out.println("500000");
// }
int currentprobability = price * 100 / inf * failprobal/100;//因为int类型,所以*100方便运算
probability += currentprobability;
}
if (probability >= 90) {
return price
}
}
return -1;
}
这样算下来的结果是36000,也就是说最少用36000,就可以实现6次中标概率超90%的目标。
当然,这里列出来的解放时间复杂度很高了,O(n3)了,肯定有很大的优化空间,这个欢迎读者给出更优的解法。