TensorFlow实战-机器学习之MNIST

针对MNIST手写数字识别问题,使用TensorFlow进行训练学习。

首先,下载MNIST训练数据集和测试数据集,为了方便大家,我在我的资源中上传了该data压缩包,供大家使用,因为官网下载实在太慢了(大约10min),官网地址如下:

http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz

http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz

http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz

http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz

下载速度比较慢。

然后把下载的4个压缩包(记住:不需要解压!不需要解压!不需要解压!),放到工程目录下,我是放到工程目录的data子目录下。如图:

 

 接着编写包括前向传播的过程以及神经网络参数的脚本:mnist_inference.py  代码如下:

# -*- coding:utf-8 -*-
import tensorflow as tf

# 定义神经网络结构相关的参数。
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500

# 通过tf.get_variable 函数来获取变量。在训练神经网络时会创建这些变量:在测试时会通过
# 保存的模型加载这些变量的取值。而且更加方便的是,因为可以在变量加载时将滑动平均变量
# 重命名,所以可以直接通过同样的名字在训练时使用变量自身,而在测试时使用变量的滑动平
# 均值。在这个函数中也会将变量的正则化损失加入损失集合。
def get_weight_variable(shape,regularizer):
    weights = tf.get_variable(
        "weights",shape,
        initializer=tf.truncated_normal_initializer(stddev=0.1)
    )
    # 当给出了正则化生成函数时,将当前变量的正则化损失加入名字为losses的集合。在这里
    # 使用了add_to_collection 韩式将一个张量加入一个集合,而这个集合的名称为losses。
    # 这是自定义的集合,不在TensorFlow 自动管理的集合列表中。
    if regularizer != None:
        tf.add_to_collection('losses',regularizer(weights))
    return weights

# 定义神经网络的前向传播过程。
def inference(input_tensor,regularizer):
    # 声明第一层神经网络的变量并完成前向传播过程。
    with tf.variable_scope('layer1'):
        # 这里通过tf.get_variable 或 tf.Variable 没有本质区别,因为在训练或是测试中
        # 没有在同一个程序中多次调用这个函数。如果在同一个程序中多次调用,在第一次调用
        # 之后需要将 reuse 参数设置成为 TRUE 。
        weights = get_weight_variable(
            [INPUT_NODE,LAYER1_NODE],regularizer
        )
        biases = tf.get_variable(
            "biases",[LAYER1_NODE],
            initializer=tf.constant_initializer(0.0)
        )
        layer1 = tf.nn.relu(tf.matmul(input_tensor,weights) + biases)

    # 类似的声明第二层神经网络的变量并完成前向传播过程。
    with tf.variable_scope('layer2'):
        weights = get_weight_variable(
            [LAYER1_NODE,OUTPUT_NODE],regularizer
        )
        biases = tf.get_variable(
            "biases",[OUTPUT_NODE],
            initializer=tf.constant_initializer(0.0)
        )
        layer2 = tf.matmul(layer1,weights) + biases

    # 返回最后前向传播的结果。
    return layer2

再编写神经网络的训练程序mnist_train.py,我是将训练好的模型保存在工程目录下的model文件夹中,代码如下:

# -*- coding:utf-8 -*-
import os

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# 加载 mnist_inference.py 中定义的常量和前向传播的函数。
import mnist_inference

# 配置神经网络的参数。
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARAZTION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99
# 模型保存的路径和文件名。
MODEL_SAVE_PATH = "D:\Appium\MNIST\model"
MODEL_NAME  = "model"

def train(mnist):
    # 定义输入输出placeholder.
    x = tf.placeholder(
        tf.float32,[None,mnist_inference.INPUT_NODE],name='x-input'
    )
    y_ = tf.placeholder(
        tf.float32,[None,mnist_inference.OUTPUT_NODE],name='y-input'
    )

    regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
    # 直接使用mnist_inference.py 中定义的前向传播过程。
    y = mnist_inference.inference(x,regularizer)
    global_step = tf.Variable(0,trainable=False)

    # 定义损失函数、学习率、滑动平均操作以及训练过程。
    variable_averages = tf.train.ExponentialMovingAverage(
        MOVING_AVERAGE_DECAY,global_step
    )
    variables_averages_op = variable_averages.apply(
        tf.trainable_variables()
    )
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=y,labels=tf.arg_max(y_,1)
    )
    cross_entropy_mean = tf.reduce_mean(cross_entropy)
    loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
    learning_rate = tf.train.exponential_decay(
        LEARNING_RATE_BASE,
        global_step,
        mnist.train.num_examples / BATCH_SIZE,
        LEARNING_RATE_DECAY
    )
    train_step = tf.train.GradientDescentOptimizer(learning_rate) \
                    .minimize(loss,global_step=global_step)
    with tf.control_dependencies([train_step,variables_averages_op]):
        train_op = tf.no_op(name='train')

    # 初始化TensorFlow持久化类。
    saver = tf.train.Saver()
    with tf.Session() as sess:
        tf.global_variables_initializer().run()

        # 在训练过程中不再测试模型在验证数据上的表现,验证和测试的过程将会有一个独立
        # 的程序来完成。
        for i in range(TRAINING_STEPS):
            xs,ys = mnist.train.next_batch(BATCH_SIZE)
            _,loss_value,step = sess.run([train_op,loss,global_step],feed_dict={x:xs,y_:ys})
            # 每1000轮保存一次模型。
            if i % 1000 == 0:
                # 输出当前的训练情况。这里只输出了模型在当前训练batch上的损失函数
                # 大小。通过损失函数的大小可以大概了解训练的情况。在验证数据集上的
                # 正确率信息会有一个单独的程序来生成。
                print ("After %d training step(s),loss on training "
                       "batch is %g." % (step,loss_value))
                # 保存当前的模型。注意这里给出了global_step 参数,这样可以让每个被
                # 保存模型的文件名末尾加上训练的轮数,比如"model.ckpt-1000" 表示
                # 训练1000 轮之后得到的模型。
                saver.save(
                    sess,os.path.join(MODEL_SAVE_PATH,MODEL_NAME),
                    global_step=global_step
                )

def main(argv=None):
    mnist = input_data.read_data_sets("D:\Appium\MNIST\data",one_hot=True)
    train(mnist)

if __name__ == '__main__':
    tf.app.run()

运行mnist_train.py脚本,可以看到训练结果:

最后编写单独的测试程序mnist_eval.py,来检验模型的准确率,代码如下:

# -*- coding:utf-8 -*-
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# 加载mnist_inference.py 和 mnist_train.py 中定义的常量和函数。
import mnist_inference
import mnist_train

# 每10 秒加再一次最新的模型,并在测试数据上测试最新模型的正确率。
EVAL_INTERVAL_SECS = 10

def evaluate(mnist):
    with tf.Graph().as_default() as g:
        # 定义输入输出的格式。
        x = tf.placeholder(
            tf.float32,[None,mnist_inference.INPUT_NODE],name='x-input'
        )
        y_ = tf.placeholder(
            tf.float32,[None,mnist_inference.OUTPUT_NODE],name='y-input'
        )
        validate_feed = {x:mnist.validation.images,
                         y_:mnist.validation.labels}

        # 直接通过调用封装好的函数来计算前向传播的结果。因为测试时不关注正则化损失的值,
        # 所以这里用于计算正则化损失的函数被设置成None。
        y = mnist_inference.inference(x,None)

        # 使用前向传播的结果计算正确率。如果需要对位置的样例进行分类,那么使用
        # tf.argmax(y,1)就可以得到输入样例的预测类别了。
        correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

        # 通过变量重命名的方式来加载模型,这样在前向传播的过程中就不需要调用求滑动平均
        # 的函数来获取平均值了。这样就可以完全共用mnist_inference.py中定义的
        # 前向传播过程。
        variable_averages = tf.train.ExponentialMovingAverage(
            mnist_train.MOVING_AVERAGE_DECAY
        )
        variables_to_restore = variable_averages.variables_to_restore()
        saver = tf.train.Saver(variables_to_restore)

        # 每隔EVAL_INTERVAL_SECS 秒调用一次计算正确率的过程以检测训练过程中正确率的
        # 变化。
        while True:
            with tf.Session() as sess:
                # tf.train.get_checkpoint_state函数会通过checkpoint 文件自动
                # 找到目录中最新模型的文件名。
                ckpt = tf.train.get_checkpoint_state(
                    mnist_train.MODEL_SAVE_PATH
                )
                if ckpt and ckpt.model_checkpoint_path:
                    # 加载模型。
                    saver.restore(sess,ckpt.model_checkpoint_path)
                    # 通过文件名得到模型保存时迭代的轮数
                    global_step = ckpt.model_checkpoint_path\
                                    .split('/')[-1].split('-')[-1]
                    accuracy_score = sess.run(accuracy,
                                              feed_dict=validate_feed)
                    print ("After %s training step(s),validation "
                           "accuravy = %g" % (global_step,accuracy_score))
                else:
                    print('No checkpoint file found')
                    return
            time.sleep(EVAL_INTERVAL_SECS)

def main(argv=None):
    mnist = input_data.read_data_sets("D:\Appium\MNIST\data",one_hot=True)
    evaluate(mnist)

if __name__ == '__main__':
    tf.app.run()

由于mnist_eval.py调用的是经过29000次训练保存的模型,所以该模型会被测试多次,输出结果不变。

当训练比较缓慢、耗时较长(几小时或者几天)时,训练模型就会调用最新的保存模型,检测训练结果。

我的电脑上训练结果重复如下:

 

参考书籍:TensorFlow 实战Google深度学习框架 第2版 ,郑泽宇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值