针对MNIST手写数字识别问题,使用TensorFlow进行训练学习。
首先,下载MNIST训练数据集和测试数据集,为了方便大家,我在我的资源中上传了该data压缩包,供大家使用,因为官网下载实在太慢了(大约10min),官网地址如下:
http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
下载速度比较慢。
然后把下载的4个压缩包(记住:不需要解压!不需要解压!不需要解压!),放到工程目录下,我是放到工程目录的data子目录下。如图:
接着编写包括前向传播的过程以及神经网络参数的脚本:mnist_inference.py 代码如下:
# -*- coding:utf-8 -*-
import tensorflow as tf
# 定义神经网络结构相关的参数。
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500
# 通过tf.get_variable 函数来获取变量。在训练神经网络时会创建这些变量:在测试时会通过
# 保存的模型加载这些变量的取值。而且更加方便的是,因为可以在变量加载时将滑动平均变量
# 重命名,所以可以直接通过同样的名字在训练时使用变量自身,而在测试时使用变量的滑动平
# 均值。在这个函数中也会将变量的正则化损失加入损失集合。
def get_weight_variable(shape,regularizer):
weights = tf.get_variable(
"weights",shape,
initializer=tf.truncated_normal_initializer(stddev=0.1)
)
# 当给出了正则化生成函数时,将当前变量的正则化损失加入名字为losses的集合。在这里
# 使用了add_to_collection 韩式将一个张量加入一个集合,而这个集合的名称为losses。
# 这是自定义的集合,不在TensorFlow 自动管理的集合列表中。
if regularizer != None:
tf.add_to_collection('losses',regularizer(weights))
return weights
# 定义神经网络的前向传播过程。
def inference(input_tensor,regularizer):
# 声明第一层神经网络的变量并完成前向传播过程。
with tf.variable_scope('layer1'):
# 这里通过tf.get_variable 或 tf.Variable 没有本质区别,因为在训练或是测试中
# 没有在同一个程序中多次调用这个函数。如果在同一个程序中多次调用,在第一次调用
# 之后需要将 reuse 参数设置成为 TRUE 。
weights = get_weight_variable(
[INPUT_NODE,LAYER1_NODE],regularizer
)
biases = tf.get_variable(
"biases",[LAYER1_NODE],
initializer=tf.constant_initializer(0.0)
)
layer1 = tf.nn.relu(tf.matmul(input_tensor,weights) + biases)
# 类似的声明第二层神经网络的变量并完成前向传播过程。
with tf.variable_scope('layer2'):
weights = get_weight_variable(
[LAYER1_NODE,OUTPUT_NODE],regularizer
)
biases = tf.get_variable(
"biases",[OUTPUT_NODE],
initializer=tf.constant_initializer(0.0)
)
layer2 = tf.matmul(layer1,weights) + biases
# 返回最后前向传播的结果。
return layer2
再编写神经网络的训练程序mnist_train.py,我是将训练好的模型保存在工程目录下的model文件夹中,代码如下:
# -*- coding:utf-8 -*-
import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 加载 mnist_inference.py 中定义的常量和前向传播的函数。
import mnist_inference
# 配置神经网络的参数。
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARAZTION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99
# 模型保存的路径和文件名。
MODEL_SAVE_PATH = "D:\Appium\MNIST\model"
MODEL_NAME = "model"
def train(mnist):
# 定义输入输出placeholder.
x = tf.placeholder(
tf.float32,[None,mnist_inference.INPUT_NODE],name='x-input'
)
y_ = tf.placeholder(
tf.float32,[None,mnist_inference.OUTPUT_NODE],name='y-input'
)
regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
# 直接使用mnist_inference.py 中定义的前向传播过程。
y = mnist_inference.inference(x,regularizer)
global_step = tf.Variable(0,trainable=False)
# 定义损失函数、学习率、滑动平均操作以及训练过程。
variable_averages = tf.train.ExponentialMovingAverage(
MOVING_AVERAGE_DECAY,global_step
)
variables_averages_op = variable_averages.apply(
tf.trainable_variables()
)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=y,labels=tf.arg_max(y_,1)
)
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY
)
train_step = tf.train.GradientDescentOptimizer(learning_rate) \
.minimize(loss,global_step=global_step)
with tf.control_dependencies([train_step,variables_averages_op]):
train_op = tf.no_op(name='train')
# 初始化TensorFlow持久化类。
saver = tf.train.Saver()
with tf.Session() as sess:
tf.global_variables_initializer().run()
# 在训练过程中不再测试模型在验证数据上的表现,验证和测试的过程将会有一个独立
# 的程序来完成。
for i in range(TRAINING_STEPS):
xs,ys = mnist.train.next_batch(BATCH_SIZE)
_,loss_value,step = sess.run([train_op,loss,global_step],feed_dict={x:xs,y_:ys})
# 每1000轮保存一次模型。
if i % 1000 == 0:
# 输出当前的训练情况。这里只输出了模型在当前训练batch上的损失函数
# 大小。通过损失函数的大小可以大概了解训练的情况。在验证数据集上的
# 正确率信息会有一个单独的程序来生成。
print ("After %d training step(s),loss on training "
"batch is %g." % (step,loss_value))
# 保存当前的模型。注意这里给出了global_step 参数,这样可以让每个被
# 保存模型的文件名末尾加上训练的轮数,比如"model.ckpt-1000" 表示
# 训练1000 轮之后得到的模型。
saver.save(
sess,os.path.join(MODEL_SAVE_PATH,MODEL_NAME),
global_step=global_step
)
def main(argv=None):
mnist = input_data.read_data_sets("D:\Appium\MNIST\data",one_hot=True)
train(mnist)
if __name__ == '__main__':
tf.app.run()
运行mnist_train.py脚本,可以看到训练结果:
最后编写单独的测试程序mnist_eval.py,来检验模型的准确率,代码如下:
# -*- coding:utf-8 -*-
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 加载mnist_inference.py 和 mnist_train.py 中定义的常量和函数。
import mnist_inference
import mnist_train
# 每10 秒加再一次最新的模型,并在测试数据上测试最新模型的正确率。
EVAL_INTERVAL_SECS = 10
def evaluate(mnist):
with tf.Graph().as_default() as g:
# 定义输入输出的格式。
x = tf.placeholder(
tf.float32,[None,mnist_inference.INPUT_NODE],name='x-input'
)
y_ = tf.placeholder(
tf.float32,[None,mnist_inference.OUTPUT_NODE],name='y-input'
)
validate_feed = {x:mnist.validation.images,
y_:mnist.validation.labels}
# 直接通过调用封装好的函数来计算前向传播的结果。因为测试时不关注正则化损失的值,
# 所以这里用于计算正则化损失的函数被设置成None。
y = mnist_inference.inference(x,None)
# 使用前向传播的结果计算正确率。如果需要对位置的样例进行分类,那么使用
# tf.argmax(y,1)就可以得到输入样例的预测类别了。
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
# 通过变量重命名的方式来加载模型,这样在前向传播的过程中就不需要调用求滑动平均
# 的函数来获取平均值了。这样就可以完全共用mnist_inference.py中定义的
# 前向传播过程。
variable_averages = tf.train.ExponentialMovingAverage(
mnist_train.MOVING_AVERAGE_DECAY
)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
# 每隔EVAL_INTERVAL_SECS 秒调用一次计算正确率的过程以检测训练过程中正确率的
# 变化。
while True:
with tf.Session() as sess:
# tf.train.get_checkpoint_state函数会通过checkpoint 文件自动
# 找到目录中最新模型的文件名。
ckpt = tf.train.get_checkpoint_state(
mnist_train.MODEL_SAVE_PATH
)
if ckpt and ckpt.model_checkpoint_path:
# 加载模型。
saver.restore(sess,ckpt.model_checkpoint_path)
# 通过文件名得到模型保存时迭代的轮数
global_step = ckpt.model_checkpoint_path\
.split('/')[-1].split('-')[-1]
accuracy_score = sess.run(accuracy,
feed_dict=validate_feed)
print ("After %s training step(s),validation "
"accuravy = %g" % (global_step,accuracy_score))
else:
print('No checkpoint file found')
return
time.sleep(EVAL_INTERVAL_SECS)
def main(argv=None):
mnist = input_data.read_data_sets("D:\Appium\MNIST\data",one_hot=True)
evaluate(mnist)
if __name__ == '__main__':
tf.app.run()
由于mnist_eval.py调用的是经过29000次训练保存的模型,所以该模型会被测试多次,输出结果不变。
当训练比较缓慢、耗时较长(几小时或者几天)时,训练模型就会调用最新的保存模型,检测训练结果。
我的电脑上训练结果重复如下:
参考书籍:TensorFlow 实战Google深度学习框架 第2版 ,郑泽宇