# 《TensorFlow实战Google深度学习框架》09 TensorBoard可视化
# win10 Tensorflow1.0.1 python3.5.3
# CUDA v8.0 cudnn-8.0-windows10-x64-v5.1
# filename:ts09.03.py # 改造后的mnist_train
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_inference
# 1. 定义神经网络的参数
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 3000
MOVING_AVERAGE_DECAY = 0.99
# 2. 定义训练的过程并保存TensorBoard的log文件
def train(mnist):
# 输入数据的命名空间。
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
y = mnist_inference.inference(x, regularizer)
global_step = tf.Variable(0, trainable=False)
# 处理滑动平均的命名空间。
with tf.name_scope("moving_average"):
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
# 计算损失函数的命名空间。
with tf.name_scope("loss_function"):
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
# 定义学习率、优化方法及每一轮执行训练的操作的命名空间。
with tf.name_scope("train_step"):
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,
staircase=True)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train')
# 训练模型。
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
if i % 1000 == 0:
# 配置运行时需要记录的信息。
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
# 运行时记录运行信息的proto。
run_metadata = tf.RunMetadata()
_, loss_value, step = sess.run(
[train_op, loss, global_step], feed_dict={x: xs, y_: ys},
options=run_options, run_metadata=run_metadata)
print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
else:
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
writer = tf.summary.FileWriter("c:/python35/tensorlog/show03", tf.get_default_graph())
writer.close()
# 3. 主函数
def main(argv=None):
mnist = input_data.read_data_sets("../../datasets/MNIST_data", one_hot=True)
train(mnist)
if __name__ == '__main__':
main()
'''
After 1 training step(s), loss on training batch is 2.84959.
After 1001 training step(s), loss on training batch is 0.250467.
After 2001 training step(s), loss on training batch is 0.210708.
'''
tensorflow22《TensorFlow实战Google深度学习框架》笔记-09-03 TensorBoard改造后的mnist_train code
最新推荐文章于 2022-05-12 09:40:22 发布