多标签图像分类 (Multi-label Image Classification)
HCP: A Flexible CNN Framework for Multi-Label Image Classification
https://blog.csdn.net/zhangjunhit/article/details/72818610
https://111qqz.com/2018/02/多标签图像分类任务的评价方法-map/
Keras 实现
https://blog.csdn.net/sinat_26917383/article/details/72861152
多标签文本分类
https://blog.csdn.net/wjj5881005/article/details/53389833
macro-averaged and micro-averaged
https://sanmisanfan.github.io/2017/08/16/mulitlable-classification/
多标签的多分类区别
多类分类问题:有多个类别,但每个实例只分配一个类别。
多标签分类问题:有多个类别,且每个实例可以使用多个类别。比如,一部电影被归类为喜剧和浪漫类型。每部电影都有可能被分成一个或多个不同的类别,这些类型的问题被称为多标签分类问题。
简而言之,通过单个实例所能使用的类别数(标签数)来区分这两个问题。