深度学习和行人重识别
文章平均质量分 80
学习笔记
s123l4
这个作者很懒,什么都没留下…
展开
-
CBAM: Convolutional Block Attention Module
https://arxiv.org/pdf/1807.06521.pdf摘要:我们提出了卷积块注意模块(CBAM),一个简单而有效的用于前馈卷积神经网络的注意模块。给定中间特征图,我们的模块依次推导出沿通道和空间两个独立维度的注意图,然后将注意图乘到输入特征图上进行自适应特征细化。因为CBAM是一个轻量级的通用模块,它可以无缝地集成到任何CNN架构中,开销可以忽略不计,并且可以与基础CNN一起进行端到端培训。我们通过在ImageNet-1K, MS COCO检测,VOC 2007检测数据集广泛的实验来验原创 2023-01-10 09:50:31 · 1008 阅读 · 0 评论 -
A Coarse-to-fine Pyramidal Model for Person Re-identification via Multi-Loss Dynamic Training
https://arxiv.org/pdf/1810.12193v1.pdf摘要:大多数现有的重识别(Re-ID)方法高度依赖于精确的边界框,使图像彼此对齐。然而,由于不可避免的挑战场景,目前的检测模型往往输出不准确的边界框,这不可避免地降低了这些重新id算法的性能。我们提出了一种新的粗-细金字塔模型,该模型不仅融合了局部和全局信息,而且融合了它们之间的渐进线索。该金字塔模型能够匹配不同尺度的线索,并在图像对没有对齐的情况下搜索出相同身份的正确图像。此外,为了学习区分性身份表示,我们探索了一种动态训练方原创 2023-01-10 09:47:54 · 150 阅读 · 0 评论 -
Bag of Tricks and A Strong Baseline for Deep Person Re-identification
https://arxiv.org/pdf/1903.07071.pdf摘要本文探讨了一种简单有效的行人重识别基线(ReID)。近年来,行人重识别(ReID)利用深度神经网络取得了进展,并具有并取得了良好的性能。然而,许多先进的方法设计复杂的网络结构和连接多分支的特点。在文献中,一些有效的训练技巧在几篇论文或源代码中都有简要介绍。**本文将亲自对这些有效的训练技巧在ReID进行收集和评价。**将这些技巧结合在一起,该模型仅使用全局特征,在Market1501上达到94.5%的rank-1和85.9%的m原创 2020-12-19 20:22:14 · 525 阅读 · 0 评论 -
pytorch学习网站
pytorch:https://pytorch.org/github:https://github.com/pytorch/pytorchpytorch API:https://pytorch.org/docs/master/pytorch tutorials:https://pytorch.org/tutorials/原创 2020-07-09 15:42:47 · 369 阅读 · 0 评论 -
行人重识别——全局特征和局部特征
全局特征全局特征:每一张行人图片的全局信息进行一个特征抽取,这个特征没有任何的空间信息局部特征局部特征是对图像中的某一个区域进行特征提取,最后将多个局部特征融合起来作为最终特征。常用的方式:切片、姿态、分割、网格一些概念水平切块Gate SiameseAlignedReIDPCBICNNSCPNet总结:将图像进行水平方向的等分,每一个水平切块通过水平池化提取一个特征Gate Siamese与AlignedReID通过设计规则融合所有的局部特征计算距离P原创 2020-07-09 10:48:29 · 6287 阅读 · 2 评论 -
行人重识别——表征学习与度量学习
根据损失分类:表征学习和度量学习表征学习:没有直接在训练网络的时候考虑图片间的相似度,而把行人重识别任务当做分类问题或者验证问题来看待度量学习:通过网络学习出两张图片的相似度,在行人重识别问题上,表现为同一行人的不同图片间的相似度大于不同行人的不同图片表征学习分类损失&验证损失分类损失又称id损失:利用行人的id作为训练标签来训练模型,每次只需要输入一张图片验证损失:输入一对(两张)行人图片,让网络来学习这两张图片是否属于同一行人,等效于二分类问题(IDE网络是Reid领域开始的一个原创 2020-06-24 17:28:11 · 4141 阅读 · 2 评论 -
商业场景应用之行人重识别基本介绍
定义行人重识别(Person re-identification):图像检索的一个子问题,即给定一个监控行人图像去检索跨设备下的该行人图像。应用场景:刑事侦查(短时间)、行人理解、行人跟踪(单摄像头单目标、单摄像头多目标、多摄像头多目标)行人重识别系统:特征提取:学习能够应对在不同摄像头下行人变化的特征(鲁棒性)度量学习:将学习到的特征映射到新的空间使相同的人更近不同的人更远图像检索:根据图片特征之间的距离进行排序,返回检索结果数据集:单帧:一张图标记一个ID序列:一个序列标记一个原创 2020-06-24 11:30:15 · 698 阅读 · 3 评论 -
网络的压缩与加速原理
模型压缩与加速概述必要性、可行性、最终目的方法概述:前端压缩、后端压缩(极大改造网络结构)前端压缩知识蒸馏采用的是迁移学习,通过预先训练好的教师模型的输出作为监督信号去训练另外一个轻量化网络。...原创 2020-06-24 09:56:16 · 323 阅读 · 2 评论 -
从LeNet到SENet
卷积结构的类型正常卷积(Convolution):1*1卷积 (Pointwise Convolution)分组卷积(Group Convolution)分组卷积的极端形式空洞卷积(Dilated Convolution)反卷积常用的卷积神经网络LeNet(1990)2个卷积层,2个池化层,3个全连接层32321–>28286–.14146–>101016–>5516–>120–>64–>10AlexNet(2012)5个卷积层,3个原创 2020-06-11 11:17:39 · 151 阅读 · 0 评论 -
从神经网络到深度学习
机器学习机器学习:寻找一个映射原创 2020-06-10 20:04:57 · 184 阅读 · 0 评论