根据损失分类:表征学习和度量学习
表征学习:没有直接在训练网络的时候考虑图片间的相似度,而把行人重识别任务当做分类问题或者验证问题来看待
度量学习:通过网络学习出两张图片的相似度,在行人重识别问题上,表现为同一行人的不同图片间的相似度大于不同行人的不同图片
表征学习
分类损失&验证损失
分类损失又称id损失:利用行人的id作为训练标签来训练模型,每次只需要输入一张图片
验证损失:输入一对(两张)行人图片,让网络来学习这两张图片是否属于同一行人,等效于二分类问题
(IDE网络是Reid领域开始的一个,相当于hello world)
总结
- 通过构造网络来直接得到鲁棒的Reid特征,不直接学习图片之间的相似性
- 通常需要额外的FC层来辅助特征学习,测试阶段FC层会被丢弃
- ID损失的FC层维度与ID数量一致,当训练集太大时网络巨大,训练很难收敛
- 验证损失测试的时候需要输入一对图片,识别效率很低
- 表征学习通常而言比较稳定,结果容易复现
- 表征学习的分布式训练通常比较成熟
度量学习
定义
度量学习旨在学习两张图片的相似性
常用的度量学习损失方法:
对比损失(Contrastive loss)、三元组损失(Triplet loss)、 四元组损失(Quadruplet loss)、难样本采样三元组损失(Triplet hard loss with batch hard mining, TriHard loss)
对比损失
三元组损失
缺点:没有考虑距离的绝对值,不利目标跟踪
改进三元组损失
在损失函数中添加了一项锚点与正样本之间的距离值
四元组损失
难样本挖掘
传统的度量学习方法是随机采样组成元组样本,但是这样采集的样本通常是非常容易识别的样本,不利于训练表达能力强的Reid网络
难样本采样三元组损失(TriHard loss)
Triplet loss with adaptive weights
TriHard loss只考虑了极端样本的信息,造成局部梯度特别大,使得网络崩溃。
提出了一种自适应权重损失:对于正样本对,距离越大权值就越大;对于负样本对,距离越大权值就越小
总结
- 通过构造网络来直接学习图片之间的相似性
- 不需要额外的fc层来辅助特征学习
- 网络大小与训练集规模无关,但是数据采样器时间消耗会增加
- TriHard loss为目前业界度量学习的标杆
- 度量学习通常而言训练比较随机,需要一定的训练经验
- 度量学习的分布式训练不太成熟,通常需要自己实现部分代码