机器学习
机器学习:寻找一个映射。
训练阶段:有大量的映射+训练数据–>寻找一个最优的映射f*(有较高的准确性)
测试阶段:f*(输入)
监督学习,无监督学习,迁移学习(源域的知识–>目标域的知识)
迁移学习的方法:
- 数据分布自适应:通过一些变换,将不同的数据分布的距离拉近
- 特征选择:假设源域与目标域中均含有一部分公共的特征
- 子空间学习:假设源域和目标域数据在变换后的子空间中会有着相似的分布。
机器学习主要的算法:
- 神经网络
- 支持向量机
- 贝叶斯学习
- 遗传算法
神经网络
神经元–神经网络的基本运算单位。
单层感知机
常用的激活函数:
单个神经元的计算能力有限,无法处理大规模的运算。
神经元–>神经网络
多层前馈神经网络
通过梯度来更新每一层的网络的参数W。
神经网络的优缺点
优点:可以拟合任何非线性模型,实现分类、回归;基于梯度训练,方便编程实现扩展
缺陷:局部最优;层数过多会出现梯度弥散、参数量指数级增加。
神经网络训练过程:
过拟合和欠拟合
抑制过拟合的方式:dropout(更新一部分网络);正则化(约束模型的复杂度);数据增广;减小网络;提前结束训练过程。
深度学习
为什么要深度:层数越多,表达能力越强
卷积神经网络
卷积神经网络三特性:局部连接;权值共享;池化采样。
每个卷积核都在提取一种特征。
网络的构成:
卷积层、池化层(下采样)、全连接层、辅助层。
辅助层:
反卷积层:在图像分割,图像生成中广泛应用。
Batch Normalization层:输出归一化
dropout层:选择一部分进行权重的更新