7-1 图着色问题(25 分)

图着色问题是一个著名的NP完全问题。给定无向图,,问可否用K种颜色为V中的每一个顶点分配一种颜色,使得不会有两个相邻顶点具有同一种颜色?

但本题并不是要你解决这个着色问题,而是对给定的一种颜色分配,请你判断这是否是图着色问题的一个解。

输入格式:

输入在第一行给出3个整数V0)、E)和K0),分别是无向图的顶点数、边数、以及颜色数。顶点和颜色都从1到V编号。随后E行,每行给出一条边的两个端点的编号。在图的信息给出之后,给出了一个正整数N),是待检查的颜色分配方案的个数。随后N行,每行顺次给出V个顶点的颜色(第i个数字表示第i个顶点的颜色),数字间以空格分隔。题目保证给定的无向图是合法的(即不存在自回路和重边)。

输出格式:

对每种颜色分配方案,如果是图着色问题的一个解则输出Yes,否则输出No,每句占一行。

输入样例:

6 8 3
2 1
1 3
4 6
2 5
2 4
5 4
5 6
3 6
4
1 2 3 3 1 2
4 5 6 6 4 5
1 2 3 4 5 6
2 3 4 2 3 4

输出样例:

Yes
Yes
No
No

我的代码(C++):

#include<iostream>
#include<memory.h>
using namespace std;
struct Graph
{
	int a[501][501];
	int v,e;
};
int z,visited[501]={0},d[501],k=0,n,i,j;
Graph *creat()
{
	Graph *g=new Graph;
	int x,y,i;
	memset(g->a,0,sizeof(g->a));
	cin>>g->v>>g->e>>z;
	for(i=0;i<g->e;i++)
	{
		cin>>x>>y;
		g->a[x][y]=g->a[y][x]=1;
	}
	return g;
}
void dfs(Graph *g,int i)
{
	int j;
	d[k++]=i;
	visited[i]=1;
	for(j=1;j<=g->v;j++)
	{
		if(g->a[i][j]==1 && visited[j]==0) dfs(g,j);
	}
}
void dfs1(Graph *g)
{
	int i;
	for(i=1;i<=g->v;i++)
	{
		if(visited[i]==0) dfs(g,i);
	}
}
int main()
{
	Graph *g=creat();
	dfs1(g);
	cin>>n;
	while(n--)
	{
		int b[501]={0},c[501],e[501],sum=0,flag=1;
		for(i=1;i<=g->v;i++)
		{
			cin>>c[i];
			b[c[i]]++;
			if(b[c[i]]==1) sum++;
		}
		if(sum!=z) flag=0;
		for(i=0;i<k;i++) e[i]=c[d[i]];
		for(i=0;i<k;i++)
		{
			for(j=0;j<k;j++)
			{
				if(g->a[d[i]][d[j]]==1 && e[i]==e[j])
				{
					flag=0;
					break;
				}
			}
			if(flag==0) break;
		}
		if(flag==0) puts("No");
		else puts("Yes");
	}
	return 0;
}

我的代码(Java):

(用Java写有可能会运行超时)

import java.util.Scanner;
public class Main {
	private static int v,e,visited[]=new int[501],d[]=new int[501];
	private static int z,a[][]=new int[501][501],k=0;		
	public static void dfs(int i)
	{
		d[k++]=i;
		visited[i]=1;
		for(int j=1;j<=v;j++)
		{
			if(a[i][j]==1 && visited[j]==0) dfs(j);
		}
	}
	public static void dfs1()
	{
		for(int i=1;i<=v;i++)
		{
			if(visited[i]==0) dfs(i);
		}
	}
	public static void main(String[] args) {
		Scanner In=new Scanner(System.in);
		v=In.nextInt();
		e=In.nextInt();
		z=In.nextInt();
		int a[][]=new int[501][501];
		for(int i=0;i<e;i++)
		{
			int x=In.nextInt(),y=In.nextInt();
			a[x][y]=a[y][x]=1;
		}
		dfs1();
		int n=In.nextInt();
		for(int i=0;i<n;i++)
		{
			int b[]=new int[501],c[]=new int[501],e[]=new int[501];
			int sum=0,flag=1;
			for(int j=1;j<=v;j++)
			{
				c[j]=In.nextInt();
				b[c[j]]++;
				if(b[c[j]]==1) sum++;
			}
			if(sum!=z) flag=0;
			for(int j=0;j<k;j++) e[j]=c[d[j]];
			for(int j=0;j<k;j++)
			{
				for(int r=0;r<k;r++)
				{
					if(a[d[j]][d[r]]==1 && e[j]==e[r])
					{
						flag=0;
						break;
					}
				}
				if(flag==0) break;
			}
			if(flag==0) System.out.printf("No\n");
			else System.out.printf("Yes\n");
		}
	}
}

我的代码(C语言):

#include<stdio.h>
int visited[501]={0},d[501],k=0;
int a[501][501],v,e,z,x,y,i,j,n;
void dfs(int i)
{
	int j;
	d[k++]=i;
	visited[i]=1;
	for(j=1;j<=v;j++)
	{
		if(a[i][j]==1 && visited[j]==0) dfs(j);
	}
}
void dfs1()
{
	int i;
	for(i=1;i<=v;i++)
	{
		if(visited[i]==0) dfs(i);
	}
}
int main()
{
	scanf("%d%d%d",&v,&e,&z);
	for(i=0;i<e;i++)
	{
		scanf("%d%d",&x,&y);
		a[x][y]=a[y][x]=1;
	}
	dfs1();
	scanf("%d",&n);
	while(n--)
	{
		int b[501]={0},c[501],e[501],sum=0,flag=1;
		for(i=1;i<=v;i++)
		{
			scanf("%d",&c[i]);
			b[c[i]]++;
			if(b[c[i]]==1) sum++;
		}
		if(sum!=z) flag=0;
		for(i=0;i<k;i++) e[i]=c[d[i]];
		for(i=0;i<k;i++)
		{
			for(j=0;j<k;j++)
			{
				if(a[d[i]][d[j]]==1 && e[i]==e[j])
				{
					flag=0;
					break;
				}
			}
			if(flag==0) break;
		}
		if(flag==0) puts("No");
		else puts("Yes");
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值