图着色问题是一个著名的NP完全问题。给定无向图,,问可否用K种颜色为V中的每一个顶点分配一种颜色,使得不会有两个相邻顶点具有同一种颜色?
但本题并不是要你解决这个着色问题,而是对给定的一种颜色分配,请你判断这是否是图着色问题的一个解。
输入格式:
输入在第一行给出3个整数V(0)、E(≥)和K(0),分别是无向图的顶点数、边数、以及颜色数。顶点和颜色都从1到V编号。随后E行,每行给出一条边的两个端点的编号。在图的信息给出之后,给出了一个正整数N(≤),是待检查的颜色分配方案的个数。随后N行,每行顺次给出V个顶点的颜色(第i个数字表示第i个顶点的颜色),数字间以空格分隔。题目保证给定的无向图是合法的(即不存在自回路和重边)。
输出格式:
对每种颜色分配方案,如果是图着色问题的一个解则输出Yes
,否则输出No
,每句占一行。
输入样例:
6 8 3
2 1
1 3
4 6
2 5
2 4
5 4
5 6
3 6
4
1 2 3 3 1 2
4 5 6 6 4 5
1 2 3 4 5 6
2 3 4 2 3 4
输出样例:
Yes
Yes
No
No
我的代码(C++):
#include<iostream>
#include<memory.h>
using namespace std;
struct Graph
{
int a[501][501];
int v,e;
};
int z,visited[501]={0},d[501],k=0,n,i,j;
Graph *creat()
{
Graph *g=new Graph;
int x,y,i;
memset(g->a,0,sizeof(g->a));
cin>>g->v>>g->e>>z;
for(i=0;i<g->e;i++)
{
cin>>x>>y;
g->a[x][y]=g->a[y][x]=1;
}
return g;
}
void dfs(Graph *g,int i)
{
int j;
d[k++]=i;
visited[i]=1;
for(j=1;j<=g->v;j++)
{
if(g->a[i][j]==1 && visited[j]==0) dfs(g,j);
}
}
void dfs1(Graph *g)
{
int i;
for(i=1;i<=g->v;i++)
{
if(visited[i]==0) dfs(g,i);
}
}
int main()
{
Graph *g=creat();
dfs1(g);
cin>>n;
while(n--)
{
int b[501]={0},c[501],e[501],sum=0,flag=1;
for(i=1;i<=g->v;i++)
{
cin>>c[i];
b[c[i]]++;
if(b[c[i]]==1) sum++;
}
if(sum!=z) flag=0;
for(i=0;i<k;i++) e[i]=c[d[i]];
for(i=0;i<k;i++)
{
for(j=0;j<k;j++)
{
if(g->a[d[i]][d[j]]==1 && e[i]==e[j])
{
flag=0;
break;
}
}
if(flag==0) break;
}
if(flag==0) puts("No");
else puts("Yes");
}
return 0;
}
我的代码(Java):
(用Java写有可能会运行超时)
import java.util.Scanner;
public class Main {
private static int v,e,visited[]=new int[501],d[]=new int[501];
private static int z,a[][]=new int[501][501],k=0;
public static void dfs(int i)
{
d[k++]=i;
visited[i]=1;
for(int j=1;j<=v;j++)
{
if(a[i][j]==1 && visited[j]==0) dfs(j);
}
}
public static void dfs1()
{
for(int i=1;i<=v;i++)
{
if(visited[i]==0) dfs(i);
}
}
public static void main(String[] args) {
Scanner In=new Scanner(System.in);
v=In.nextInt();
e=In.nextInt();
z=In.nextInt();
int a[][]=new int[501][501];
for(int i=0;i<e;i++)
{
int x=In.nextInt(),y=In.nextInt();
a[x][y]=a[y][x]=1;
}
dfs1();
int n=In.nextInt();
for(int i=0;i<n;i++)
{
int b[]=new int[501],c[]=new int[501],e[]=new int[501];
int sum=0,flag=1;
for(int j=1;j<=v;j++)
{
c[j]=In.nextInt();
b[c[j]]++;
if(b[c[j]]==1) sum++;
}
if(sum!=z) flag=0;
for(int j=0;j<k;j++) e[j]=c[d[j]];
for(int j=0;j<k;j++)
{
for(int r=0;r<k;r++)
{
if(a[d[j]][d[r]]==1 && e[j]==e[r])
{
flag=0;
break;
}
}
if(flag==0) break;
}
if(flag==0) System.out.printf("No\n");
else System.out.printf("Yes\n");
}
}
}
我的代码(C语言):
#include<stdio.h>
int visited[501]={0},d[501],k=0;
int a[501][501],v,e,z,x,y,i,j,n;
void dfs(int i)
{
int j;
d[k++]=i;
visited[i]=1;
for(j=1;j<=v;j++)
{
if(a[i][j]==1 && visited[j]==0) dfs(j);
}
}
void dfs1()
{
int i;
for(i=1;i<=v;i++)
{
if(visited[i]==0) dfs(i);
}
}
int main()
{
scanf("%d%d%d",&v,&e,&z);
for(i=0;i<e;i++)
{
scanf("%d%d",&x,&y);
a[x][y]=a[y][x]=1;
}
dfs1();
scanf("%d",&n);
while(n--)
{
int b[501]={0},c[501],e[501],sum=0,flag=1;
for(i=1;i<=v;i++)
{
scanf("%d",&c[i]);
b[c[i]]++;
if(b[c[i]]==1) sum++;
}
if(sum!=z) flag=0;
for(i=0;i<k;i++) e[i]=c[d[i]];
for(i=0;i<k;i++)
{
for(j=0;j<k;j++)
{
if(a[d[i]][d[j]]==1 && e[i]==e[j])
{
flag=0;
break;
}
}
if(flag==0) break;
}
if(flag==0) puts("No");
else puts("Yes");
}
return 0;
}