图着色问题 (30分)(通过遍历边来解决)
图着色问题是一个著名的NP完全问题。给定无向图G=(V,E),问可否用K种颜色为V中的每一个顶点分配一种颜色,使得不会有两个相邻顶点具有同一种颜色?
但本题并不是要你解决这个着色问题,而是对给定的一种颜色分配,请你判断这是否是图着色问题的一个解。
输入格式:
输入在第一行给出3个整数V(0<V≤500)、E(≥0)和K(0<K≤V),分别是无向图的顶点数、边数、以及颜色数。顶点和颜色都从1到V编号。随后E行,每行给出一条边的两个端点的编号。在图的信息给出之后,给出了一个正整数N(≤20),是待检查的颜色分配方案的个数。随后N行,每行顺次给出V个顶点的颜色(第i个数字表示第i个顶点的颜色),数字间以空格分隔。题目保证给定的无向图是合法的(即不存在自回路和重边)。
输出格式:
对每种颜色分配方案,如果是图着色问题的一个解则输出Yes,否则输出No,每句占一行。
输入样例:
6 8 3
2 1
1 3
4 6
2 5
2 4
5 4
5 6
3 6
4
1 2 3 3 1 2
4 5 6 6 4 5
1 2 3 4 5 6
2 3 4 2 3 4
输出样例:
Yes
Yes
No
No
注:
一开始用BFS做的,但总是有几个测试点过不了。后来发现可以直接对每一条边遍历,然后判断每条边的两个端点的颜色是否相等,如果相等就直接输出“No”进入下一次循环,如果所有的边的两个端点颜色都不相等就输出“Yes”。
有几个坑注意一下:
- 这道题最多有500个顶点,于是最多就有大约125000条边,记得数组开大一点。
- 颜色的种类必须和题目给定的K相等,多了少了都得输出“No”,太坑了!
代码:
#include<iostream>
using namespace std;
struct Edge{
int a,b;
}Edges[130000]; //注意数组要开大点
bool isOneSolution(const int * color,int e){ //判断给出的解是否正确
for(int i=0;i<e;i++){
if(color[Edges[i].a]==color[Edges[i].b]) //判断两个端点是否相等
return false;
}
return true;
}
int main(){
int v,e,k,n;
cin>>v>>e>>k;
for(int i=0;i<e;i++){
cin>>Edges[i].a>>Edges[i].b;
}
cin>>n;
while (n--){
int* color=new int[v+1]; //记录每个点的颜色
int* allColor=new int[k]; //记录这个方案中出现过的所有颜色
int cnt=0,j;
for(int i=1;i<=v;i++) {
cin >> color[i];
for(j=0;j<cnt && allColor[j]!=color[i];j++);//遍历allColor,判断color[i]是否为新颜色
if(j>=cnt)
allColor[cnt++]=color[i]; //将新颜色记录进allColor,并将cnt+1
}
//注意cnt必须等于k
cout << (cnt == k && isOneSolution(color, e) ? "Yes" : "No") << endl;
}
return 0;
}
结果没问题: