隐马尔可夫模型
778811
这个作者很懒,什么都没留下…
展开
-
统计学习方法---隐马尔可夫模型1
隐马尔可夫模型三要素:初始状态概率向量,状态转移概率矩阵A 和观测概率矩阵B。隐马尔可夫模型作了两个假设: 1)任意时刻t的状态只依赖其前一时刻的状态; 2)任意时刻的观测只依赖该时刻的状态;原创 2016-07-14 16:38:14 · 749 阅读 · 0 评论 -
统计学习方法---隐马尔可夫模型2
这里仅关注其概率计算问题,概率计算问题有前向计算和后向计算两种方法,这里主要讲前向计算。原创 2016-07-14 16:53:48 · 535 阅读 · 0 评论 -
马尔可夫模型与条件随机场模型
条件随机场模型是由Lafferty在2001年提出的一种典型的判别式模型。它在观测序列的基础上对目标序列进行建模,重点解决序列化标注的问题。条件随机场模型既具有判别式模型的优点,又具有产生式模型考虑到上下文标记间的转移概率,以序列化形式进行全局参数优化和解码的特点,解决了其他判别式模型(如最大熵马尔科夫模型)难以避免的标记偏置问题。 条件随机场理论(CRFs)可以用于序列标记、数据分转载 2016-07-14 20:27:57 · 3350 阅读 · 0 评论