1)调用solver.prototxt生成.caffemodel和.solverstate
caffe中的bin文件夹里有caffe.exe,在上级目录中创建.bat文件,添加内容并保存运行:
./bin/caffe.exe train --solver=examples/cifar10/cifar10_quick_solver.prototxtpause
然后就会在examples/cifar10/文件夹中,训练出.caffemodel和.solverstate文件,其中.caffemodel用于测试,.solverstate用于恢复训练(像断点续 传)
2)当所有数据都训练好之后,接下来就是如何将模型应用到实际数据了:
./build/tools/caffe.bin test -model=examples/mnist/lenet_train_test.prototxt -weights=examples/mnist/lenet_iter_10000.caffemodel -gpu=0
如果没有GPU则使用
./build/tools/caffe.bin test -model=examples/mnist/lenet_train_test.prototxt -weights=examples/mnist/lenet_iter_10000.caffemodel
test:表示对训练好的模型进行Testing,而不是training。其他参数包括train, time, device_query。
-model=XXX:指定模型prototxt文件,这是一个文本文件,详细描述了网络结构和数据集信息