caffe
文章平均质量分 76
778811
这个作者很懒,什么都没留下…
展开
-
关于caffe
Caffe的网络定义Caffe中的网络都是有向无环图的集合,可以直接定义: name: "dummy-net"layers {name: "data" …}layers {name: "conv" …}layers {name: "pool" …}layers {name: "loss" …}数据及其导数以blobs的形式在层间流动。Caffe的各层定义转载 2016-07-30 21:26:04 · 516 阅读 · 0 评论 -
caffe中各个层——解析
转自:http://www.cnblogs.com/denny402/p/5071126.html所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Re转载 2016-08-06 21:05:12 · 28797 阅读 · 3 评论 -
mnist_train_test.prototxt代码解析
上一篇介绍了如何准备数据集,做好准备之后我们先看怎样对训练好的模型进行Testing。先用手写体识别例子,MNIST是数据集(包括训练数据和测试数据),深度学习模型采用LeNet(具体介绍见http://yann.lecun.com/exdb/lenet/),由Yann LeCun教授提出。如果你编译好了Caffe,那么在CAFFE_ROOT下运行如下命令:转载 2016-08-06 20:11:10 · 2075 阅读 · 0 评论 -
caffe中的损失函数
损失函数,一般由两项组成,一项是loss term,另外一项是regularization term。J=L+R先说损失项loss,再说regularization项。1. 分对得分1,分错得分0.gold standard2. hinge loss(for softmargin svm),J=1/2||w||^2 + sum(max(0,1-yf(w,x)))转载 2016-08-06 19:16:32 · 3974 阅读 · 0 评论 -
solver.prototxt解析
*_slover.prototxtnet: "test.prototxt"#训练网络的配置文件test_iter: 100#test_iter 指明在测试阶段有多上个前向过程(也就是有多少图片)被执行。在MNIST例子里,在网络配置文件里已经设置test网络的batch size=100,这里test_iter设置为100,那在测试阶段共有100*100=10000 图转载 2016-08-06 12:35:29 · 1264 阅读 · 0 评论 -
caffe示例实现之5用CaffeNet训练与测试自己的数据集
转自:http://blog.csdn.net/liumaolincycle/article/details/48475479本文主要来自Caffe作者Yangqing Jia网站给出的examples。@article{jia2014caffe, Author = {Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and K转载 2016-08-05 17:06:52 · 3900 阅读 · 2 评论 -
.caffemodel的生成和利用
1)调用solver.prototxt生成.caffemodel和.solverstate caffe中的bin文件夹里有caffe.exe,在上级目录中创建.bat文件,添加内容并保存运行: ./bin/caffe.exe train --solver=examples/cifar10/cifar10_quick_solver.prototxtpause转载 2016-08-05 11:21:18 · 9517 阅读 · 5 评论 -
caffemodel转matlab格式
1).MATLAB示例程序:%% Load the Caffe.Net and save in model file.def = fullfile('..', 'models', 'VGG_CNN_M_1024', 'test.prototxt');net = fullfile('..', 'output', 'default', 'voc_2007_trainval', ...'vgg原创 2016-08-05 11:07:52 · 4301 阅读 · 2 评论 -
mnist——prototxt
以最简单的mnist网络为例,因为数据集的不同则需要更改的参数也不同。在训练前最好在example下新建个文件夹命名为数据集的名称,然后把mnist下的5个文件: lenet.prototxt lenet_solver.prototxt lenet_train.prototxt lenet_test.proto转载 2016-08-05 10:52:53 · 1002 阅读 · 0 评论 -
CNN基本问题
转自:http://blog.csdn.net/hungryof/article/details/50241351基本理解CNN降低训练参数的2大法宝?局部感受野、权值共享 局部感受野:就是输出图像某个节点(像素点)的响应所对应的最初的输入图像的区域就是感受野。 权值共享:比如步长为1,如果每移动一个像素就有一个新的权值对应,那么太夸张了,需要训练的参数爆炸似增长,转载 2016-08-04 22:15:15 · 1235 阅读 · 0 评论 -
编译MatCaffe
转自:http://blog.csdn.net/ws_20100/article/details/50525879使用如下命令编译MatCaffemake all matcaffe11之后,你可以用以下命令测试MatCaffe:make mattest11如果你在运行上面命令时,遇到如下错误:libstdc++.so.6 version ‘GLIBCXX_3.4.1转载 2016-07-31 16:43:48 · 1583 阅读 · 0 评论 -
使用GPU在caffe上进行CNN训练
转自:http://blog.csdn.net/ws_20100/article/details/488607491.配置caffe环境[请参考此篇博客:http://blog.csdn.net/ws_20100/article/details/48850449]本篇介绍如何在caffe环境下,实现"图像对图像"的卷积神经网络的训练。2.文件转载 2016-07-31 16:29:33 · 3435 阅读 · 2 评论 -
Caffe使用step by step:使用自己数据对已经训练好的模型进行finetuning
转自:http://www.cnblogs.com/empty16/p/4884774.html在经过前面Caffe框架的搭建以及caffe基本框架的了解之后,接下来就要回到正题:使用caffe来进行模型的训练。但如果对caffe并不是特别熟悉的话,从头开始训练一个模型会花费很多时间和精力,需要对整个caffe框架有一个很清楚的了解,难度比较高;同时,在使用数据迭代训练自己模型时会转载 2016-07-30 22:19:27 · 3623 阅读 · 0 评论 -
如何在caffe中添加新的Layer
转自:http://blog.csdn.net/kuaitoukid/article/details/41865803分类:CNNcaffe深度学习机器学习 (19730) (30)本文分为两部分,先写一个入门的教程,然后再给出自己添加maxout与NIN的layer的方法(一)其实在Github上已经有答案了(https://github.c转载 2016-08-10 20:12:13 · 2325 阅读 · 0 评论