pytorch学习笔记
文章平均质量分 92
Nobody33
人工智能,并行计算学习者
展开
-
NLP发展及其详解
RNN(循环神经网络)的结构特点在于其循环单元的设计,这种设计允许网络在处理序列数据时保持对之前信息的记忆。然而,传统的RNN存在一些问题,比如在训练过程中可能出现的梯度消失或梯度爆炸问题,这使得它们难以学习长距离依赖。为了解决这个问题,研究者们提出了更复杂的循环单元结构,如LSTM(长短时记忆网络)和GRU(门控循环单元),这些结构通过引入门控机制来更好地捕捉长距离依赖。总的来说,RNN的结构使其成为处理序列数据的强大工具,而其变体如LSTM和GRU则进一步增强了其在复杂序列建模任务中的能力。原创 2024-04-28 21:06:35 · 1114 阅读 · 0 评论 -
模型训练常见超参数的讲解
在模型训练中,潜在空间(latent space)是指嵌入在模型内部的一种低维、通常连续的表示空间,尤其是在无监督学习或生成模型(如自编码器、变分自编码器VAEs、生成对抗网络GANs)中。潜在空间的维度(latent dimensionality)是指这个空间的维数,即潜在变量的数量。原创 2024-04-28 20:12:33 · 1446 阅读 · 0 评论 -
Pytorch重点概念笔记:都是本人学习中真实遇到的(一)
是PyTorch中的一个函数,用于减少张量的维数,具体来说,它会移除所有维数为1的维度。这个操作通常用于处理那些在特定操作(如卷积或池化)后可能产生不必要的单维度张量。在某些情况下,张量操作会生成形状中包含单维度的张量。例如,一个形状为的张量可能是在某个卷积操作后产生的,其中B是批量大小,C是通道数,而最后两个维度是1。在这些情况下,单维度并没有携带任何有用的空间信息,只是增加了张量的维数。的作用就是移除这些不必要的单维度,从而简化张量的形状。inputdim下面是一些在上面的例子中,第一个。原创 2024-04-22 15:48:47 · 1111 阅读 · 0 评论