Pytorch重点概念笔记:都是本人学习中真实遇到的(一)

1.torch.squeeze的原理参数和使用方法

torch.squeeze 是PyTorch中的一个函数,用于减少张量的维数,具体来说,它会移除所有维数为1的维度。这个操作通常用于处理那些在特定操作(如卷积或池化)后可能产生不必要的单维度张量。

原理:
在某些情况下,张量操作会生成形状中包含单维度的张量。例如,一个形状为 [B, C, 1, 1] 的张量可能是在某个卷积操作后产生的,其中 B 是批量大小,C 是通道数,而最后两个维度是1。在这些情况下,单维度并没有携带任何有用的空间信息,只是增加了张量的维数。torch.squeeze 的作用就是移除这些不必要的单维度,从而简化张量的形状。

参数:
torch.squeeze 可以接受一个或两个参数:

  • input (Tensor) – 输入张量。
  • dim (int, optional) – 如果指定了,则只会在给定的维度上移除单维度。如果未指定,则移除所有单维度。

使用方法:
下面是一些 torch.squeeze 的使用示例:

import torch
# 创建一个具有单维度的张量
tensor = torch.tensor([[1], [2], [3]])
# 使用squeeze移除所有单维度
squeezed_tensor = torch.squeeze(tensor)
print(squeezed_tensor)  # 输出: tensor([1, 2, 3])
# 创建一个具有多个单维度的张量
batch_tensor = torch.tensor([[[[1]], [[2]]]])
# 使用squeeze移除所有单维度
squeezed_batch_tensor = torch.squeeze(batch_tensor)
print(squeezed_batch_tensor)  # 输出: tensor([1, 2])
# 只在特定维度上移除单维度
specific_squeeze = torch.squeeze(batch_tensor, 2)
print(specific_squeeze)  # 输出: tensor([[[1], [2]]])

在上面的例子中,第一个 tensor 是一个二维张量,其中一个维度是单维度。使用 torch.squeeze 后,单维度被移除,得到一个一维张量。第二个 batch_tensor 是一个四维张量,其中有两个单维度。在默认情况下,torch.squeeze 会移除所有单维度,但如果指定了 dim 参数,它只会在那个维度上移除单维度。在最后一个例子中,我们只在第2个维度上移除了单维度。

2.pytorch中.transpose()的使用方法

在PyTorch中,.transpose()函数用于交换张量的两个维度。这个操作对于改变张量的形状和进行矩阵转置特别有用。下面是.transpose()函数的基本使用方法:

import torch
# 创建一个二维张量
tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])
# 使用.transpose()交换两个维度
# 第一个参数是维度索引,第二个参数是维度索引
transposed_tensor = tensor.transpose(0, 1)
print(tensor)
print(transposed_tensor)

输出将会是:

tensor([[1, 2, 3],
        [4, 5, 6]])
tensor([[1, 4],
        [2, 5],
        [3, 6]])

在这个例子中,我们创建了一个2x3的二维张量,然后使用.transpose(0, 1)来交换第0维和第1维,这样就得到了一个转置后的3x2张量。
对于更高维度的张量,你可以指定任意两个维度索引来交换它们的位置。例如,对于一个3维张量,你可以使用.transpose(1, 2)来交换第1维和第2维。
此外,对于矩阵(2D张量),PyTorch还提供了一个特殊的.t()方法,它是.transpose(0, 1)的简写形式,用于快速进行矩阵转置:

# 使用.t()进行矩阵转置
transposed_matrix = tensor.t()
print(transposed_matrix)

这将输出与上面.transpose(0, 1)相同的结果。

3.pytorch中.reshape()和.view()区别对比

在PyTorch中,.reshape().view()都可以用来改变张量(tensor)的形状(shape),但是它们在底层实现上有所不同:

  1. .view()
    • .view()返回一个具有相同数据但不同形状的新张量。
    • .view()要求张量是连续的(contiguous)或者在调用.view()之前调用.contiguous()来确保张量是连续的。
    • 如果可能的话,.view()不会复制数据,而是返回一个指向相同内存的新张量视图。
  2. .reshape()
    • .reshape()也返回一个具有相同数据但不同形状的新张量。
    • .reshape()可以在不连续的张量上使用,它会自动处理非连续的情况。
    • 如果需要,.reshape()可能会复制数据以创建一个连续的张量。
      在实际使用中,如果您不确定张量是否连续,或者您想要确保操作不会修改原始张量,那么使用.reshape()可能更安全。如果您知道您的张量是连续的,并且想要避免不必要的内存复制,那么使用.view()可能更高效。
      在PyTorch的早期版本中,.view()可能比.reshape()更受欢迎,因为它通常更高效。但是,随着PyTorch的发展,.reshape()的性能已经得到了改进,现在在很多情况下两者的性能差异不大。因此,选择哪一个通常取决于个人偏好或者具体的使用场景。

4.梯度

在PyTorch中,张量(tensor)是执行计算的基础单元,并且对于梯度下降等优化算法至关重要。每个张量都有一个标志 requires_grad,这个标志默认是关闭的。当我们需要对某个张量进行梯度计算时,需要手动将 requires_grad 设置为 True,这样做会让PyTorch记录所有对该张量的操作。当计算完成后,我们可以通过调用 .backward() 方法来自动计算所有相关张量的梯度,这些梯度会被存储在每个张量的 .grad 属性中。
如果我们想要停止对某个张量的跟踪,以免它在后续计算中继续积累梯度,可以调用 .detach() 方法。这个方法会创建一个新的张量,它与原始张量共享相同的数据,但是不记录梯度历史。此外,如果我们想要在代码块内彻底停止跟踪所有张量的历史,可以使用 torch.no_grad() 上下文管理器。这在模型评估阶段特别有用,因为它可以减少计算资源的使用,并确保模型参数不会在无意间被更新。

5.自动求导

在PyTorch中,自动求导(Automatic Differentiation)是一种用于计算函数梯度(即导数)的机制。这种机制是深度学习框架中的一个核心特性,因为它使得计算复杂函数的导数变得非常简单,这对于训练神经网络至关重要。

自动求导的内部实现

PyTorch中的自动求导机制主要依赖于两个关键类:TensorFunction

  1. Tensor
    • Tensor 是PyTorch中的核心数据结构,它不仅存储了数据的值,还存储了数据的梯度,以及与其他Tensor的创建关系。
    • 每个Tensor都有一个grad_fn属性,该属性引用了一个Function对象,这个Function对象代表了创建该Tensor的函数(例如加法、乘法等)。
  2. Function
    • Function 是自动求导过程中的另一个关键组件,它封装了关于如何计算前向传播(forward pass)和反向传播(backward pass)的知识。
    • 每个Function都实现了两个主要的操作:forwardbackwardforward操作接收输入Tensor并计算输出Tensor,而backward操作接收输出Tensor的梯度,并计算输入Tensor的梯度。

自动求导的过程

自动求导的过程可以分为三个阶段:前向传播、反向传播和梯度计算。

  1. 前向传播
    • 在前向传播阶段,Functionforward方法被调用,以计算输出Tensor。在这个过程中,每个操作都会创建一个新的Tensor,并保存对前一个Tensor的引用,形成一个计算图(computation graph)。
    • 如果某个Tensorrequires_grad属性被设置为True,那么PyTorch会记录该Tensor的所有操作,以便于后续的梯度计算。
  2. 反向传播
    • 在反向传播阶段,用户调用输出Tensor.backward()方法。这个方法会触发一个从输出到输入的递归过程,其中每个Function都会调用它的backward方法。
    • 在这个过程中,Function会使用链式法则(Chain Rule)来计算其输入Tensor的梯度。每个Functionbackward方法接收输出Tensor的梯度,并计算输入Tensor的梯度。
  3. 梯度计算
    • 在反向传播过程中,每个Function都会计算其输入Tensor的梯度,并将这些梯度存储在输入Tensor.grad属性中。
    • 最终,所有设置了requires_gradTensor都会积累它们的梯度,这些梯度可以用于更新模型的参数。

示例

下面是一个简单的自动求导示例:

import torch
# 创建两个张量,并设置requires_grad=True
x = torch.tensor(1.0, requires_grad=True)
y = torch.tensor(2.0, requires_grad=True)
# 进行一些计算
z = x * y
z.backward(torch.tensor(1.0))
# 打印梯度
print(x.grad)  # 输出: 2.0
print(y.grad)  # 输出: 1.0

在这个例子中,我们创建了两个Tensor xy,并设置了它们的requires_grad属性。然后我们计算了它们的乘积z。当我们调用z.backward()时,PyTorch会计算z关于xy的梯度,并将这些梯度存储在x.grady.grad中。
总之,PyTorch的自动求导机制通过构建一个计算图并在图中进行前向和反向传播,使得梯度计算变得非常高效和直观。这种机制使得研究人员和开发者能够轻松地实现和训练复杂的深度学习模型。

6.梯度计算过程

在PyTorch中,梯度计算是通过自动求导(Automatic Differentiation)机制实现的。这个过程可以分为几个步骤,每个步骤都涉及到PyTorch内部的实现原理。

步骤和内部实现原理:

  1. 张量(Tensor)和计算图(Computation Graph)的创建
    • 当你创建一个Tensor并执行操作时,PyTorch会构建一个计算图,这个图包含了执行的操作和操作的顺序。
    • 如果一个Tensorrequires_grad属性被设置为True,那么PyTorch会记录所有涉及该Tensor的操作,以便于后续的梯度计算。
  2. 前向传播(Forward Propagation)
    • 在前向传播阶段,计算图中的每个节点(Function)会计算其输出Tensor
    • 每个Function都会保存其输入Tensor和输出Tensor的信息。如果输入Tensorrequires_gradTrue,输出Tensor也会自动设置requires_gradTrue
  3. 反向传播(Backward Propagation)
    • 当你调用输出Tensor.backward()方法时,PyTorch会开始反向传播过程。
    • 从输出Tensor开始,每个Function会根据链式法则(Chain Rule)计算其输入Tensor的梯度。
    • 梯度计算是从输出到输入的递归过程。每个Functionbackward方法接收输出Tensor的梯度,计算输入Tensor的梯度,并将这些梯度累积到输入Tensor.grad属性中。
  4. 梯度积累(Gradient Accumulation)
    • 在反向传播过程中,如果多个路径都指向同一个Tensor,那么这些路径的梯度会被累加到该Tensor.grad属性中。
    • 这确保了即使在一个复杂的计算图中,每个Tensor的梯度也会被正确地计算和累加。
  5. 梯度计算完成
    • 一旦反向传播过程完成,所有设置了requires_gradTensor都会在其.grad属性中存储其梯度。
    • 这些梯度可以用于更新模型的参数,例如使用梯度下降算法。

示例

下面是一个简单的自动求导示例,展示了上述步骤和内部实现原理:

import torch
# 创建两个张量,并设置requires_grad=True
x = torch.tensor(1.0, requires_grad=True)
y = torch.tensor(2.0, requires_grad=True)
# 进行一些计算
z = x * y
# 计算梯度
z.backward(torch.tensor(1.0))
# 打印梯度
print(x.grad)  # 输出: 2.0
print(y.grad)  # 输出: 1.0

在这个例子中,我们创建了两个Tensor xy,并设置了它们的requires_grad属性。然后我们计算了它们的乘积z。当我们调用z.backward()时,PyTorch会计算z关于xy的梯度,并将这些梯度存储在x.grady.grad中。

整个过程如下:
● 创建张量,并设置requires_grad=True来追踪梯度。
● 构建计算图,执行相关的操作。
● 调用backward()方法执行反向传播。
● 梯度存储在.grad属性中。
每次调用backward()时,PyTorch会累积梯度到.grad属性中。如果你不想要这种行为,可以在每次反向传播前将梯度清零,使用x.grad.zero_()方法。

7.如何构建一个全连接层

在PyTorch中,你可以通过几种方式实现一个全连接层(也称为线性层)。最简单的方法是使用PyTorch提供的nn.Linear模块,它是一个内置的类,用于实现全连接层的操作。下面是如何使用nn.Linear来创建和使用一个全连接层的示例:

import torch
import torch.nn as nn
# 定义全连接层的参数
input_features = 3  # 输入特征的数量
output_features = 2  # 输出特征的数量
# 创建全连接层
fc = nn.Linear(input_features, output_features)
# 创建输入张量
x = torch.tensor([[1, 2, 3], [4, 5, 6]], requires_grad=True)
# 通过全连接层前向传播输入张量
y = fc(x)
# 打印输出
print(y)

在这个例子中,我们首先导入了必要的PyTorch模块,然后定义了全连接层的输入和输出特征数量。接着,我们创建了一个nn.Linear对象fc,它代表了一个全连接层。我们创建了一个输入张量x,它有两行三列,表示批量大小为2,特征数量为3。然后,我们将输入张量x通过全连接层fc进行前向传播,得到输出张量y
如果你想要手动实现全连接层,可以使用torch.matmul和逐元素加法。下面是一个手动实现全连接层的示例:

import torch
# 定义全连接层的参数
input_features = 3
output_features = 2
# 创建权重和偏置张量
w = torch.randn(output_features, input_features, requires_grad=True)
b = torch.randn(output_features, requires_grad=True)
# 创建输入张量
x = torch.tensor([[1, 2, 3], [4, 5, 6]], requires_grad=True)
# 手动实现全连接层的前向传播
y = torch.matmul(x, w.t()) + b
# 打印输出
print(y)

在这个例子中,我们手动创建了权重w和偏置b张量,然后使用torch.matmul计算了输入张量x和权重w的矩阵乘法,并通过逐元素加法添加了偏置b。注意,这里我们使用了w.t()来对权重w进行转置,这是因为torch.matmul默认行为是进行矩阵乘法,我们需要将权重w的形状从[output_features, input_features]转置为[input_features, output_features]以匹配输入张量x的形状。
通常,使用nn.Linear是最简单和最常见的方法,因为它自动处理了权重和偏置的初始化,以及相关的梯度计算。

8.SGD用法详解

在PyTorch中,torch.optim.SGD(Stochastic Gradient Descent)是一个实现随机梯度下降算法的优化器。它用于调整模型的参数以最小化损失函数。以下是torch.optim.SGD的一些主要参数及其作用,我们将通过一个简单的例子来解释这些参数的作用:

  1. params (iterable) – 这是要优化的参数。通常,这是模型的可学习参数,可以通过model.parameters()来获取。
    model = torch.nn.Linear(10, 5)
    optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
    
  2. lr (float) – 这是学习率(learning rate),即每次更新参数时,参数变化的比例。这是SGD算法中最重要的超参数之一。
    # 学习率为0.01
    optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
    
  3. momentum (float, 可选) – 这是动量(momentum)的系数,用于加速学习过程,特别是在处理高原和沟壑时。默认值为0,即没有动量。
    # 使用动量系数0.9
    optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
    
  4. dampening (float, 可选) – 这是在Nesterov动量中的一个系数,用于抑制动量。默认值为0。
    # 使用dampening系数0.1
    optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, dampening=0.1)
    
  5. weight_decay (float, 可选) – 这是在每次参数更新时,L2正则化(权重衰减)的系数。默认值为0,即没有权重衰减。
    # 使用权重衰减系数1e-4
    optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=1e-4)
    
  6. nesterov (bool, 可选) – 这指示是否使用Nesterov动量。如果设置为True,则使用Nesterov动量。默认值为False
    # 使用Nesterov动量
    optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, nesterov=True)
    

下面是如何在PyTorch中使用torch.optim.SGD的一个完整示例:

import torch
import torch.nn as nn
import torch.optim as optim
# 创建一个简单的线性模型
model = nn.Linear(10, 5)
# 定义损失函数
criterion = nn.CrossEntropyLoss()
# 创建一个随机输入张量和目标张量
inputs = torch.randn(64, 10)
targets = torch.randint(0, 5, (64,))
# 创建SGD优化器
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=1e-4)
# 训练模型
for epoch in range(10):
    # 前向传播
    outputs = model(inputs)
    
    # 计算损失
    loss = criterion(outputs, targets)
    
    # 清除梯度
    optimizer.zero_grad()
    
    # 反向传播
    loss.backward()
    
    # 更新参数
    optimizer.step()

在这个示例中,我们首先创建了一个简单的线性模型和一个交叉熵损失函数。然后,我们创建了一些随机输入和目标数据。接着,我们创建了一个SGD优化器实例,并设置了学习率、动量和权重衰减。在训练循环中,我们使用优化器来清除梯度、执行反向传播和更新模型参数。

  • 14
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值