pytorch
文章平均质量分 96
Nobody33
人工智能,并行计算学习者
展开
-
第P1周:手写数字识别
更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。是 NumPy 库中的一个函数,它的作用是从数组的形状中移除单维的条目,即维度大小为 1 的轴。这个函数的目的是为了减少数组的维度,使得数组的形状更加紧凑,便于进行某些操作或计算。原创 2024-05-20 10:12:56 · 789 阅读 · 0 评论 -
第P1周:实现mnist手写数字识别
如果不是 None,这将在步长之后和数据加载之前在每个工作子进程上调用,并使用工作 id([0,num_workers - 1] 中的一个 int)的顺序逐个导入。如果设置为True,则会检查是否存在已下载的数据集,如果不存在,则会从互联网上下载并保存到指定的目录中。这是PyTorch中的一个函数,用于创建一个新的设备对象。是Pytorch自带的一个数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集。: 提供图像转换的功能,包括常见的图像增强方法,如裁剪、旋转、翻转等。的 Iterable。原创 2023-11-12 12:29:34 · 70 阅读 · 1 评论 -
第P9周:YOLOv5-Backbone模块实现
在学习YOLOv5之前,必定要对v3和v4进行简要了解,上一周直接上手的v5,感觉有一些力不从心。这次从头来过,理清思路。首先,要清楚YOLO系列算法主要是运用于目标检测领域。YOLO的全称是You Only Look Once,它们的结构都由输入层、卷积层、残差块、批量归一化层、激活函数层和输出层组成。其中,YOLOv3引入了一种新的结构单元——空间金字塔池化模块(Spatial Pyramid Pooling module, SPP),以提高模型的准确性。原创 2023-10-27 19:31:39 · 145 阅读 · 1 评论 -
第P6周:好莱坞明星识别
我感觉就是将卷积核依次选取的部分进行一定程度的“模糊化”,好让以后识别到其他有类似的特征的图片能识别,就像人名之间重复很少,但是提取出来姓氏就能匹配到一大批相同姓氏的人,然后后面再经过平均池化啊最大池化这些再将提取出来的特征筛选,然后再全连接,就拼接成了相同姓氏的可能和你有关系的人的一个大的一维数据,我是这么理解的。我现在仔细看了这一段发现其实改这一段其实才是最最主要的,我一直以为这里是一个封装好的固定模型,我不能轻易改,但现在看来好像这里的损失函数,设置的epoch数都挺重要的。故以下这些数据都没有了。原创 2023-09-15 15:57:13 · 88 阅读 · 0 评论 -
第P8周:YOLOv5-C3模块实现
(2)MAP:公式中的P(w|x)参数位置正好和MLE相反,相比MLE多了先验,多了贝叶斯公式的作用。对数据进行概率建模,得到数据在多大概率上能被分成一类,将P(x|w)最大化。(1)patch embedding:将原始二维数据切分,分成多个patch,每个相当于句子中的一个词,然后经过全连接层,将patch压成一个向量。实现将实验数据详细切分并全部吸收的功效,实现了多层次多角度的特征学习。transformer后的全连接层,就是一个MLP-head,将输入时的分类向量取出,输出分类类别。原创 2023-10-05 21:10:16 · 82 阅读 · 0 评论 -
第P7周:咖啡豆识别加学习心得
比如使用Tanh函数后,将原来的非线性数据映射到新的空间,形成新的分类。每个encoder包括self-attention和前馈网络两个核心,计算好各个部分的权重然后再进行标签,最后在进行新的构架Decoder在机器翻译中的作用是在重编的时候,不光要看已经翻译好的内容,还要兼顾encoder中的上下文信息。6.关于attention其实我们就可以理解为权重,而self-attention就是去除顺序,在输入一个词时去寻找它与所有词之间的联系,自己找到自己的特征,通过加权求和,获取对上下文的全局感知。原创 2023-09-29 15:02:57 · 202 阅读 · 0 评论 -
第P5周:运动鞋品牌识别
2.导入数据二、构建简单的CNN网络三、训练模型1.编写训练函数2.编写测试函数3.设置动态学习率4.正式训练四、结果可视化1. Loss与Accuracy图原创 2023-09-07 20:12:25 · 244 阅读 · 1 评论 -
第P4周:猴痘病识别
num_batches = len(dataloader) # 批次数目,1875(60000/32)size = len(dataloader.dataset) # 训练集的大小,一共60000张图片。原创 2023-08-31 20:39:42 · 172 阅读 · 0 评论 -
第P3周:天气识别
【代码】P3:天气识别。原创 2023-08-25 18:45:38 · 83 阅读 · 1 评论