基于Python实现中美地区经济发展对比与预测分析(商业大数据分析)【500010072】

准备工作

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.linear_model import LinearRegression
import seaborn as sns
from pyecharts.charts import Bar
from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.charts import Timeline
from pyecharts.charts import Line
from pyecharts.charts import Pie
from pyecharts.globals import SymbolType
from pyecharts.commons.utils import JsCode

numpy、matplotlib、pandas 三大库的导入是为了后面数据的处理,seaborn、pyecharts 库的导入是为了将数据更加精美的可视化。sklearn 库是为了后面构建模型需要导入的库。

数据导入

China_main_city=pd.read_csv('./data/中国主要城市经济统计数据 2012-2021.csv')
China_area=pd.read_excel('./data/1997—2018年县域社会经济主要指标面板数据.xlsx')
USA_state=pd.read_csv('./data/usa_states_summary.csv')
USA_industry=pd.read_csv('./data/usa_states_gdp_by_industry.csv')

将数据导入,并赋给不同的变量。

  • 中国主要城市经济统计数据2012-2021 赋给变量China_main_City
  • 1997—2018 年县域社会经济主要指标面板数据赋给变量China_area
  • usa_states_summary 数据赋给变量USA_state
  • usa_states_gdp_by_industry 赋给变量 USA_industry

对比分析

对比分析 2022 年美国各州与中国主要城市的经济

GDP 分析
China_main_city.head(20)

image.png

USA_industry.head()

image.png

USA_state.head()

image.png
查看usa_states_summary.csv数据集是否有缺失值,如有则进行填充

np.any(pd.isnull(USA_state))

image.png

China_main_city=China_main_city.set_index('城市')
China_main_city.index

image.png

city=np.unique(China_main_city.index)

image.png

中国方面
中国主要城市地区生产总值
#将2021年中国主要城市的数据赋给变量city_2021
city_2021=China_main_city[China_main_city['年份']=='2021年']
city_2021=city_2021.reset_index()
#将2021年中国主要城市的GDP数据赋给变量city_2021_gdp
city_2021_gdp=city_2021[['城市','地区生产总值(当年价格)(亿元)']]
#将2021年中国主要城市GDP数据可视化
def get_pl_bar2(city_2021_gdp):
    sort_info = city_2021_gdp.sort_values(by='地区生产总值(当年价格)(亿元)', ascending=True)
    c = (
        #…………
    )
    return c
get_pl_bar2(city_2021_gdp)

image.png
通过分析 2021 年中国主要城市地区生产总值,可以发现 2021 年上海、北京、深圳、广州是位距前四的,因此接下来我们将挑选这四个城市去分析2022 年的 GDP 情况。
取上海、北京、深圳、广州 2012-2021 年的 GDP 数据。

#取上海2012-2021年的GDP数据
shanghai_gdp=China_main_city['地区生产总值(当年价格)(亿元)']['上海']
shanghai_gdp=shanghai_gdp.values
print(shanghai_gdp)
#取北京2012-2021年的GDP数据
beijing_gdp=China_main_city['地区生产总值(当年价格)(亿元)']['北京']
beijing_gdp=beijing_gdp.values
print(beijing_gdp)
#取广州2012-2021年的GDP数据
guangzhou_gdp=China_main_city['地区生产总值(当年价格)(亿元)']['广州']
guangzhou_gdp=guangzhou_gdp.values
print(guangzhou_gdp)
#取深圳2012-2021年的GDP数据
shenzhen_gdp=China_main_city['地区生产总值(当年价格)(亿元)']['深圳']
shenzhen_gdp=shenzhen_gdp.values
print(shenzhen_gdp)
year=[i for i in range(2012,2022)]
print(year)

image.png
根据北京、上海、广州、深圳这四个城市2011-2021年的gdp数据,构建回归模型,分别预测其2022年gdp数据。

#北京
x_bj=np.array(year).reshape(-1,1)
y_bj=beijing_gdp
model_bj=LinearRegression()
model_bj.fit(x_bj,y_bj)
x_new_bj=np.array([[2022]])
y_pred_bj=model_bj.predict(x_new_bj)
print(f"预测的2022年的北京GDP为:{y_pred_bj[0]}")
bj_2022_gdp=y_pred_bj[0]
#深圳
x_sz=np.array(year).reshape(-1,1)
y_sz=shenzhen_gdp
model_sz=LinearRegression()
model_sz.fit(x_sz,y_sz)
x_new_sz=np.array([[2022]])
y_pred_sz=model_sz.predict(x_new_sz)
print(f"预测的2022年的深圳GDP为:{y_pred_sz[0]}")
sz_2022_gdp=y_pred_sz[0]
#广州
x_gz=np.array(year).reshape(-1,1)
y_gz=guangzhou_gdp
model_gz=LinearRegression()
model_gz.fit(x_gz,y_gz)
x_new_gz=np.array([[2022]])
y_pred_gz=model_gz.predict(x_new_gz)
print(f"预测的2022年的广州GDP为:{y_pred_gz[0]}")
gz_2022_gdp=y_pred_gz[0]
#上海
x_sh=np.array(year).reshape(-1,1)
y_sh=shanghai_gdp
model_sh=LinearRegression()
model_sh.fit(x_sh,y_sh)
x_new_sh=np.array([[2022]])
y_pred_sh=model_sh.predict(x_new_sh)
print(f"预测的2022年的上海GDP为:{y_pred_sh[0]}")
sh_2022_gdp=y_pred_sh[0]

image.png

中国四大主要城市2022年GDP

通过回归模型,预测了北京、上海、广州、深圳在2022年的地区生产总值

#将四个城市的2022年的GDP数据合成一个ndarray对象
china_four_city_gdp=np.array([bj_2022_gdp,sh_2022_gdp,gz_2022_gdp,sz_2022_gdp])
china_four_city_gdp
#对象降维成一维
china_four_city_gdp=china_four_city_gdp.flatten()
print(china_four_city_gdp)

four_city_name=['北京','上海','广州','深圳']
china_four_city_gdp_int=china_four_city_gdp.astype(int)#将ndarray里面的数据转换成int类型
list_china_four_city_gdp_int=china_four_city_gdp_int.tolist()#将ndarray整体变成一个列表
c = (
   #……
)
c.render('2-中国四大主要城市2022年GDP.html')

image.png

  • **上海:**作为中国的经济中心,上海的 GDP 排名第一,显示了其在金融、商业和服务业等领域的强大实力。上海是中国最大的直辖市,也是全球最大的城市之一,其经济规模和影响力在全球范围内都有着重要地位。
  • **北京:**作为中国的首都,北京在政治、文化、教育和科技等领域有着重要的影响力。北京的 GDP 排名第二,反映了其强大的经济实力和多元化的产业结构。
  • **深圳:**深圳是中国的科技和创新中心,是中国改革开放的前沿。深圳的 GDP 排名第三,显示了其在高科技产业和现代服务业等领域的快速发展。
  • **广州:**广州是中国南方的重要经济中心,是中国的主要港口之一。广州的 GDP 排名第四,反映了其在制造业、国际贸易和服务业等领域的稳定发展。
2012-2022年中国主要城市地区生产总值
China_main_city.head()
China_main_city_change=China_main_city.reset_index()
China_main_city_change.head()
#取上海2012-2021年的GDP数据
sh_gdp_change=China_main_city_change[China_main_city_change['城市']=='上海']
sh_gdp_change=sh_gdp_change['地区生产总值(当年价格)(亿元)'].values
sh_gdp_change
sh_2022_gdp=np.array([sh_2022_gdp])
sh_2022_gdp
#将上海2012-2022年GDP数据合并
sh_gdp_change=np.append(sh_gdp_change,sh_2022_gdp)
sh_gdp_change
#取北京2012-2021年的GDP数据
bj_gdp_change=China_main_city_change[China_main_city_change['城市']=='北京']
bj_gdp_change=bj_gdp_change['地区生产总值(当年价格)(亿元)'].values
bj_gdp_change
bj_2022_gdp=np.array([bj_2022_gdp])
bj_2022_gdp
#将北京2021-2022年GDP数据合并
bj_gdp_change=np.append(bj_gdp_change,bj_2022_gdp)
bj_gdp_change
#取广州2012-2021年的GDP数据
gz_gdp_change=China_main_city_change[China_main_city_change['城市']=='广州']
gz_gdp_change=gz_gdp_change['地区生产总值(当年价格)(亿元)'].values
gz_gdp_change
gz_2022_gdp=np.array([gz_2022_gdp])
gz_2022_gdp
#将广州2012-2022年GDP数据合并
gz_gdp_change=np.append(gz_gdp_change,gz_2022_gdp)
gz_gdp_change
#取深圳2012-2021年的GDP数据
sz_gdp_change=China_main_city_change[China_main_city_change['城市']=='深圳']
sz_gdp_change=sz_gdp_change['地区生产总值(当年价格)(亿元)'].values
sz_gdp_change
sz_2022_gdp=np.array([sz_2022_gdp])
sz_2022_gdp
#将深圳2021-2022年GDP数据合并
sz_gdp_change=np.append(sz_gdp_change,sz_2022_gdp)
sz_gdp_change
#将年份数据转化成字符串类型
years=[i for i in range(2012,2023)]
years= list(map(str, years)) 
#数据可视化
#……

image.png

  • **北京:**2022 年,北京市预计实现地区生产总值 42108 亿元,是 2013 年的 2.0 倍。
  • **上海:**2022 年,上海预计地区生产总值 45124 亿元,比上年上降 0.2%。
  • **广州:**2022 年,广州市预计地区生产总值 28795 亿元,同比增长 1.0%。
  • **深圳:**2022 年,深圳市预计地区生产总值为 32222 亿元,同比增长 3.3%。

这四个城市的生产总值在过去十年中都有所增长,显示出中国经济的强劲增长势头。尽管所有城市都在增长,但增长速度各不相同。例如,北京和深圳的增长速度较快,而上海则略有下降。这四个城市在中国的经济中占据重要地位,他们的经济活动对中国的整体经济增长有着重要影响。

美国方面
2022年美国及美国各州GDP
USA_state=USA_state.reset_index()
USA_state.head()
region_name_zh=USA_state['region_name_zh']
region_name_zh=region_name_zh.values
gdp=USA_state['gdp']
data_2022={'美国各州':region_name_zh,'2022年':gdp}
data_2022=pd.DataFrame(data_2022)
def get_gdp_bar1(data_2022):
    sort_info = data_2022.sort_values(by='2022年', ascending=True)
    #……
get_gdp_bar1(data_2022)

image.png

  • **加利福尼亚州:**加利福尼亚州的名义 GDP 总量达到了 3.60 万亿美元,同比增长 6.67%,两年平均增长 9.15%,占全美国名义 GDP 总量的 14.13%,比上年降低了 0.34 个百分点,比 2020 年降低了 0.21 个百分点,继续蝉联首位,在全球可排在德国之后,位居世界第五大经济体之列。
  • **得克萨斯州、纽约州、佛罗里达州和伊利诺伊州:**这四个州分列第 2 至 5 位,名义 GDP 总量依次是 2.36 万亿美元、2.05 万亿美元、1.39 万亿美元和 1.03 万亿美元。美国名义 GDP 总量突破万亿美元的州达到 5 个。
  • **佛蒙特州:**佛蒙特州名义 GDP 总量最低,仅为 406.17 亿美元。2022 年,美国名义 GDP 总量在 500 亿美元以下的只有佛蒙特和怀俄明两个州。
  • **爱达荷州和阿拉斯加州:**2022 年,GDP 实际增速最高的是爱达荷州,达到4.88%,阿拉斯加州 GDP 实际增幅最低,比上年下降 2.43%。
  • **哥伦比亚特区:**2022 年,哥伦比亚特区人均名义 GDP 水平依然遥遥领先美国各州,达到 241610 美元,相当于全美平均水平的 3.16 倍。

这些数据显示了美国各州在经济发展上的差异,以及各州对美国总体经济的贡献。加利福尼亚州和得克萨斯州等大州的经济规模较大,对美国的经济增长贡献较大。而像佛蒙特州这样的小州,虽然经济规模较小,但也是美国经济的重要组成部分。

人口分析
中国方面
2019年中国主要城市年末户籍人口
#将2019年中国主要城市的数据赋给变量city_2019
city_2019=China_main_city[China_main_city['年份']=='2019年']
#将2019年中国主要城市的年末户籍人口数赋给变量city_2019_pl
city_2019_pl=city_2019[['年末户籍人口(万人)']]
city_2019_pl=city_2019_pl.reset_index()
#将2019年中国主要城市的年末户籍人口数可视化
def get_pl_bar2(city_2019_pl):
    sort_info = city_2019_pl.sort_values(by='年末户籍人口(万人)', ascending=True)
    #……
get_pl_bar2(city_2019_pl)

image.png
通过柱状图可以发现,2019 年中国主要城市中,重庆、成都、上海、北京是人口数量最多的城市。因此,接下来我们小组将重点对这四个城市进行2022 年人口数量的预测分析。

中国人口最多的四大主要城市

由于数据中2020、2021年中国主要城市的人口数据缺失,我们选择了2019年中国主要城市的数据进行动态图的分析。

shanghai_population=China_main_city['年末户籍人口(万人)']['上海']
shanghai_population
#可以发现上海有两年的人口数据存在缺失值,我们小组进行删除处理
shanghai_population=shanghai_population.dropna()
shanghai_population=shanghai_population.values
shanghai_population
#构建回归模型,预测上海2022年的人口数据
x_sh_pl=np.array(year).reshape(-1,1)
y_sh_pl=shanghai_population
model_sh_pl=LinearRegression()
model_sh_pl.fit(x_sh_pl,y_sh_pl)
x_new_sh_pl=np.array([[2022]])
y_pred_sh_pl=model_sh_pl.predict(x_new_sh_pl)
print(f"预测的2022年的上海人口为:{y_pred_sh_pl[0]}")

beijing_population=China_main_city['年末户籍人口(万人)']['北京']
beijing_population
#可以发现北京有两年的人口数据存在缺失值,我们小组进行删除处理
beijing_population=beijing_population.dropna()
beijing_population=beijing_population.values
beijing_population
#构建回归模型,预测北京2022年的人口数据
x_bj_pl=np.array(year).reshape(-1,1)
y_bj_pl=beijing_population
model_bj_pl=LinearRegression()
model_bj_pl.fit(x_bj_pl,y_bj_pl)
x_new_bj_pl=np.array([[2022]])
y_pred_bj_pl=model_bj_pl.predict(x_new_bj_pl)
print(f"预测的2022年的北京人口为:{y_pred_bj_pl[0]}")

chongqin_population=China_main_city['年末户籍人口(万人)']['重庆']
#可以发现重庆有两年的人口数据存在缺失值,我们小组进行删除处理
chongqin_population=chongqin_population.dropna()
chongqin_population=chongqin_population.values
chongqin_population
#构建回归模型,预测重庆2022年的人口数据
x_cq_pl=np.array(year).reshape(-1,1)
y_cq_pl=chongqin_population
model_cq_pl=LinearRegression()
model_cq_pl.fit(x_cq_pl,y_cq_pl)
x_new_cq_pl=np.array([[2022]])
y_pred_cq_pl=model_cq_pl.predict(x_new_cq_pl)
print(f"预测的2022年的重庆人口为:{y_pred_cq_pl[0]}")

chengdu_population=China_main_city['年末户籍人口(万人)']['成都']
#可以发现成都有两年的人口数据存在缺失值,我们小组进行删除处理
chengdu_population=chengdu_population.dropna()
chengdu_population=chengdu_population.values
chengdu_population
#构建回归模型,预测成都2022年的人口数据
x_cd_pl=np.array(year).reshape(-1,1)
y_cd_pl=chengdu_population
model_cd_pl=LinearRegression()
model_cd_pl.fit(x_cd_pl,y_cd_pl)
x_new_cd_pl=np.array([[2022]])
y_pred_cd_pl=model_cd_pl.predict(x_new_cd_pl)
print(f"预测的2022年的成都人口为:{y_pred_cd_pl[0]}")

image.png

china_four_city_pl=np.array([y_pred_bj_pl[0],y_pred_sh_pl[0],y_pred_cq_pl[0],y_pred_cd_pl[0]])
four_city_name_new=['北京','上海','重庆','成都']
#数据可视化
#……

image.png

  • **重庆:**重庆是中国最大的直辖市,地理位置优越,经济发展迅速,吸引了大量的人口流入。此外,重庆的行政区域面积也非常大,包括了许多农村地区,这也是其人口数量较多的一个原因。
  • **成都:**成都是中国西部的重要经济中心,近年来经济发展迅速,吸引了大量的人口流入。此外,成都的生活环境宜人,文化底蕴深厚,也吸引了许多人选择在此居住。
  • **上海:**上海是中国的经济中心,金融、商业和服务业等领域发展先进,吸引了大量的人才和劳动力。然而,由于上海的地理面积相对较小,人口密度非常高。
  • **北京:**北京是中国的首都,政治、文化、教育和科技等领域有着重要的影响力,吸引了大量的人口流入。然而,近年来北京在控制人口规模方面采取了一系列的政策,这可能是其人口数量略低于上海的一个原因。
2012-2019 年中国主要城市人口数
#取上海2012-2019年的G年末户籍人口数据
sh_pl_change=China_main_city_change[China_main_city_change['城市']=='上海']
sh_pl_change=sh_pl_change.dropna()
sh_pl_change=sh_pl_change['年末户籍人口(万人)'].values
sh_pl_change
#取北京2012-2019年的G年末户籍人口数据
bj_pl_change=China_main_city_change[China_main_city_change['城市']=='北京']
bj_pl_change=bj_pl_change.dropna()
bj_pl_change=bj_pl_change['年末户籍人口(万人)'].values
bj_pl_change
#取重庆2012-2019年的G年末户籍人口数据
cq_pl_change=China_main_city_change[China_main_city_change['城市']=='重庆']
cq_pl_change=cq_pl_change.dropna()
cq_pl_change=cq_pl_change['年末户籍人口(万人)'].values
cq_pl_change
#取成都2012-2019年的G年末户籍人口数据
cd_pl_change=China_main_city_change[China_main_city_change['城市']=='成都']
cd_pl_change=cd_pl_change.dropna()
cd_pl_change=cd_pl_change['年末户籍人口(万人)'].values
cd_pl_change
#绘图
plt.rcParams['font.sans-serif']=['kaiti']
#……
plt.show()

7-2012-2019 年中国主要城市人口数.png
从 2012 年到 2019 年,这四个城市的户籍人口都有所增长。其中,重 庆的增长最为显著,户籍人口数量最多。北京的户籍人口增长相对较慢,户籍人 口数量最少。这可能与各城市的人口政策、经济发展、生活成本等因素有关。

美国方面
2022年美国及美国各州人口数
pl=USA_state['population']
data_2022_pl={'美国各州':region_name_zh,'2022年':pl}
data_2022_pl=pd.DataFrame(data_2022_pl)
def get_pl_bar2(data_2022_pl):
    sort_info = data_2022_pl.sort_values(by='2022年', ascending=True)
    #……
    return c
get_pl_bar2(data_2022_pl)

image.png

  • **加利福尼亚州:**加利福尼亚州的人口总量为 39038223 人,占全美国人口的11.80%,是美国人口最多的州。然而,2022 年加利福尼亚州的人口数量比前一年下降了 0.3%,这主要是由于有 343230 人从加利福尼亚州搬往其他州生活。
  • **德克萨斯州:**德克萨斯州的人口总量为 29145505 人,占全美国人口的 8.70%,是美国人口第二多的州。
  • **佛罗里达州:**佛罗里达州的人口总量为 21538187 人,占全美国人口的 6.43%,是美国人口第三多的州。佛罗里达州是 2022 年人口增长速度最快的州,其人口增长了 1.9%,其中新增国际移民 125629 人,排在第二位,仅比外国移民最多的加利福尼亚州少了约 100 人。
  • **纽约州:**纽约州的人口总量为 20201249 人,占全美国人口的 6.03%,是美国人口第四多的州。

这些数据显示了美国各州在人口数量上的差异,以及各州对美国总体人口的贡献。加利福尼亚州和德克萨斯州等大州的人口数量较多,对美国的人口增长贡献较大。然而,加利福尼亚州的人口数量在 2022 年有所下降,这可能与该州的内部迁移趋势有关。

分析中国 1997-2018 年县域社会经济主要指标的变化趋势,探索经济发展的地域差异

1997-2018年20年的地区生产总值的变化
#将年份、省份、地区生产总值形成一个新的DataFrame对象
spe1=China_area[['年份','省份','地区生产总值_万元']]
#将缺失值换为0
for i in spe1.columns:
    if np.any(pd.isnull(spe1[i]))==True:
        spe1[i].fillna(value=0,inplace=True)
#以省份,年份分组,然后求和
spe1=spe1.groupby(['省份','年份']).sum()
spe1=spe1.reset_index()
#将年份的数值换成字符串型
spe1['年份'] = spe1['年份'].astype(str)
#将年份的值做成列
spe1 = spe1.pivot(index='省份', columns='年份', values='地区生产总值_万元')
spe1=spe1.reset_index()
#画1997-2018年20年的地区生产总值的变化
def get_gdp_map2(spe1):
    #……
get_gdp_map2(spe1) 

9-1997-2018年20年的地区生产总值的变化.gif
从不同年份的地图颜色上可以直观的发现,中国 1997-2018 年县域地区生产总值的变化规律可以总结成:由东向西,由沿海向内陆的增长趋势,由此可以得出:

  • **东部沿海地区:**这些地区通常是中国经济发展的先驱,拥有更多的经济资源,包括资本、技术和人才。此外,由于其地理位置优越,靠近海洋,易于进行国际贸易,这些地区的经济发展通常较快。
  • **西部和内陆地区:**相比之下,这些地区的经济发展通常较慢。然而,随着中国政府推动区域经济均衡发展的政策,如"西部大开发"等,这些地区的经济发展也在加快。这些政策鼓励投资和发展西部和内陆地区,以缩小与东部沿海地区的经济差距。

总的来说,这种从东到西,由沿海到内陆的增长趋势,反映了中国经济发展的地理分布和区域差异,以及政府政策在推动区域经济发展中的作用。这也显示了中国经济的复杂性和多样性,每个地区都有其独特的经济发展模式和挑战。

1997-2018年全国各省乡镇个数
#将年份、省份、乡镇个数_个形成一个新的DataFrame对象
spe2=China_area[['年份','省份','乡镇个数_个']]
#将缺失值换为0
for i in spe2.columns:
    if np.any(pd.isnull(spe2[i]))==True:
        spe2[i].fillna(value=0,inplace=True)
#以省份,年份分组,然后求和
spe2=spe2.groupby(['省份','年份']).sum()
spe2=spe2.reset_index()
#将年份的数值换成字符串型
spe2['年份'] = spe2['年份'].astype(str)
#将年份的值做成列
spe2= spe2.pivot(index='省份', columns='年份', values='乡镇个数_个')
spe2=spe2.reset_index()
#画1997-2018年20年的乡镇个数的变化
def get_couside_map2(spe2):
    #……
get_couside_map2(spe2) 

10-1997-2018年全国各省乡镇个数.gif
通过 1997 年-2018 年的全国各省乡镇个数变化趋势,可以发现从总体上看,乡镇个数的数量是慢慢减少的,这与中国经济的发展和城市化的推进密切相关。同时,这一趋势也符合从东到西,沿海到内陆的趋势,说明了城市化进程首先是先从东部沿海地区开始的,然后慢慢往内陆推进。

1997-2018年20年的第一产业增加值
#将年份、省份、第一产业增加值_万元形成一个新的DataFrame对象
spe3=China_area[['年份','省份','第一产业增加值_万元']]
#将缺失值换为0
for i in spe3.columns:
    if np.any(pd.isnull(spe3[i]))==True:
        spe3[i].fillna(value=0,inplace=True)
#以省份,年份分组,然后求和      
spe3=spe3.groupby(['省份','年份']).sum()
spe3=spe3.reset_index()
#将年份的数值换成字符串型
spe3['年份'] = spe3['年份'].astype(str)
#将年份的值做成列
spe3= spe3.pivot(index='省份', columns='年份', values='第一产业增加值_万元')
spe3=spe3.reset_index()
#画1997-2018年20年的第一产业增加值_万元的变化
def get_f_map2(spe3):
    #……
get_f_map2(spe3) 

11-1997-2018年第一产业增加值.gif
中国 1997-2018 年县域地区第一产业增加值的变化趋势来看,这种从华北地区到东北地区,再到沿海地区,最后到内陆地区的趋势,反映了中国第一产业(主要是农业)的地理分布和区域差异。

  • **华北地区:**这个地区包括北京、天津、河北、山西和内蒙古等省份,是中国的主要粮食生产基地之一。这个地区的农业发展较早,土地肥沃,适合种植小麦、玉米等粮食作物。
  • **东北地区:**这个地区包括辽宁、吉林和黑龙江等省份,是中国的另一个主要粮食生产基地。这个地区的土地广阔,气候适宜,适合种植大豆、玉米和稻谷等粮食作物。
  • **沿海地区:**这个地区包括上海、江苏、浙江、福建、山东、广东和海南等省份,是中国经济最发达的地区之一。由于这个地区的经济发展较快,农业在地区经济中的比重逐渐下降,但仍然是重要的农产品生产基地。
  • **内陆地区:**这个地区包括中西部的许多省份,如河南、湖北、湖南、四川、贵州、云南、陕西、甘肃、青海、宁夏和新疆等。这些地区的经济发展相对较慢,农业在地区经济中的比重较大。然而,随着中国政府推动区域经济均衡发展的政策,如"西部大开发"等,这些地区的农业发展也在加快。
1997-2018年20年的第二产业增加值
#将年份、省份、第二产业增加值_万元形成一个新的DataFrame对象
spe4=China_area[['年份','省份','第二产业增加值_万元']]
#将缺失值换为0
for i in spe4.columns:
    if np.any(pd.isnull(spe4[i]))==True:
        spe4[i].fillna(value=0,inplace=True)
#以省份,年份分组,然后求和
spe4=spe4.groupby(['省份','年份']).sum()
spe4=spe4.reset_index()
#将年份的数值换成字符串型
spe4['年份'] = spe4['年份'].astype(str)
#将年份的值做成列
spe4= spe4.pivot(index='省份', columns='年份', values='第二产业增加值_万元')
spe4=spe4.reset_index()
#画1997-2018年20年的第二产业增加值_万元的变化
def get_s_map2(spe4):
    #……
get_s_map2(spe4) 

12-1997-2018年20年的第二产业增加值.gif
中国 1997-2018 年县域地区第二产业增加值的变化趋势来看,这种从沿海地区到华北地区,再到东北地区,最后到内陆地区的趋势,反映了中国第二产业(主要是工业和建筑业)的地理分布和区域差异。

  • **沿海地区:**这些地区,包括广东、福建、浙江、江苏、上海等省份,是中国经济最发达的地区之一。由于地理位置优越,靠近海洋,易于进行国际贸易,这些地区的工业发展通常较快。此外,这些地区的基础设施建设也较为完善,有利于工业和建筑业的发展。
  • **华北地区:**这个地区包括北京、天津、河北、山西和内蒙古等省份,是中国的重要工业基地之一。这个地区的工业发展较早,拥有丰富的矿产资源,特别是煤炭和钢铁产业。
  • **东北地区:**这个地区包括辽宁、吉林和黑龙江等省份,是中国的传统工业基地。然而,由于历史原因,这个地区的工业发展在一段时间内遇到了一些困难。但是,随着中国政府推动东北振兴的政策,这个地区的工业和建筑业正在逐步恢复。
  • **内陆地区:**这个地区包括中西部的许多省份,如河南、湖北、湖南、四川、贵州、云南、陕西、甘肃、青海、宁夏和新疆等。这些地区的经济发展相对较慢,工业和建筑业在地区经济中的比重较小。然而,随着中国政府推动区域经济均衡发展的政策,如"西部大开发"等,这些地区的工业和建筑业发展也在加快。
1997-2018年20年的第三产业从业人员
#将年份、省份、第三产业从业人员_人形成一个新的DataFrame对象
spe5=China_area[['年份','省份','第三产业从业人员_人']]
#将缺失值换为0
for i in spe5.columns:
    if np.any(pd.isnull(spe5[i]))==True:
        spe5[i].fillna(value=0,inplace=True)
#以省份,年份分组,然后求和
spe5=spe5.groupby(['省份','年份']).sum()
spe5=spe5.reset_index()
#将年份的数值换成字符串型
spe5['年份'] = spe5['年份'].astype(str)
#将年份的值做成列
spe5= spe5.pivot(index='省份', columns='年份', values='第三产业从业人员_人')
spe5=spe5.reset_index()
#画1997-2018年20年的第三产业从业人员_人的变化
def get_t_map2(spe5):
    #……
get_t_map2(spe5)

13-1997-2018年20年的第三产业从业人员.gif
从中国 1997-2018 年县域地区第三产业从业人员的变化趋势来看,这种在1997-2012 年间第三产业从业人员为 0,之后呈现爆发式增长的趋势,反映了中国第三产业(主要是服务业)的发展情况。

  • **1997-2012 年:**在这个阶段,第三产业从业人员为 0 可能反映了当时中国经济的特点。这可能是由于在这个时期,中国的经济主要依赖于第一产业(农业)和第二产业(工业)。此外,这也可能与统计方法和定义有关,比如在这个时期,可能没有将某些类型的工作纳入第三产业。
  • **2012 年之后:**从 2012 年开始,第三产业从业人员呈现爆发式增长,这可能反映了中国经济结构的重大变化。这个阶段,中国政府开始大力推动服务业的发展,以促进经济结构的优化和升级。此外,随着城市化进程的加快,服务业的需求也在不断增长。

对比分析中国主要城市与美国各州在不同产业(如第一产业、第二产业、第三产业)的GDP增加值,揭示两国产业结构的差异

中国方面
第一产业增加值
China_main_city.head()

image.png

#先将上海2012-2021年的第一产业增加值取出
shanghai_f=China_main_city['第一产业增加值(亿元)']['上海']
shanghai_f=shanghai_f.values
year=[i for i in range(2012,2022)]
#构建回归模型,预测上海2022年第一产业的增加值
model_sh_f=LinearRegression()
x_sh_f=np.array(year).reshape(-1,1)
y_sh_f=shanghai_f
model_sh_f.fit(x_sh_f,y_sh_f)
x_new_sh_f=np.array([[2022]])
y_pred_sh_f=model_sh_f.predict(x_new_sh_f)
#将2022年上海第一产业增加值的预测值与前几年的数据合并,形成新的ndarray对象
sh_f=np.append(shanghai_f,y_pred_sh_f)
print(sh_f)
#先将北京2012-2021年的第一产业增加值取出
beijing_f=China_main_city['第一产业增加值(亿元)']['北京']
beijing_f=China_main_city['第一产业增加值(亿元)']['北京']
#构建回归模型,预测北京2022年第一产业的增加值
model_bj_f=LinearRegression()
x_bj_f=np.array(year).reshape(-1,1)
y_bj_f=beijing_f
model_bj_f.fit(x_bj_f,y_bj_f)
x_new_bj_f=np.array([[2022]])
y_pred_bj_f=model_bj_f.predict(x_new_bj_f)
#将2022年北京第一产业增加值的预测值与前几年的数据合并,形成新的ndarray对象
bj_f=np.append(beijing_f,y_pred_bj_f)
print(bj_f)
#先将广州2012-2021年的第一产业增加值取出
guangzhou_f=China_main_city['第一产业增加值(亿元)']['广州']
#构建回归模型,预测广州2022年第一产业的增加值
model_gz_f=LinearRegression()
x_gz_f=np.array(year).reshape(-1,1)
y_gz_f=guangzhou_f
model_gz_f.fit(x_gz_f,y_gz_f)
x_new_gz_f=np.array([[2022]])
y_pred_gz_f=model_gz_f.predict(x_new_gz_f)
#将2022年广州第一产业增加值的预测值与前几年的数据合并,形成新的ndarray对象
gz_f=np.append(guangzhou_f,y_pred_gz_f)
print(gz_f)
#先将深圳2012-2021年的第一产业增加值取出
shenzhen_f=China_main_city['第一产业增加值(亿元)']['深圳']
#构建回归模型,预测广州2022年第一产业的增加值
model_sz_f=LinearRegression()
x_sz_f=np.array(year).reshape(-1,1)
y_sz_f=shenzhen_f
model_sz_f.fit(x_sz_f,y_sz_f)
x_new_sz_f=np.array([[2022]])
y_pred_sz_f=model_sz_f.predict(x_new_sz_f)
#将2022年广州第一产业增加值的预测值与前几年的数据合并,形成新的ndarray对象
sz_f=np.append(shenzhen_f,y_pred_sz_f)
print(sz_f)

image.png

2012-2021年中国主要城市第一产业增加值
#将中国四大主要城市第一产业增加值变成整形
bj_f_int=bj_f.astype(int)
list_bj_f_int=bj_f_int.tolist()
sh_f_int=sh_f.astype(int)
list_sh_f_int=sh_f_int.tolist()
gz_f_int=gz_f.astype(int)
list_gz_f_int=gz_f_int.tolist()
sz_f_int=sz_f.astype(int)
list_sz_f_int=sz_f_int.tolist()
from pyecharts import options as opts
from pyecharts.charts import Line
#将年份数据变成字符串类型
year= list(map(str, year)) 
#……

image.png
总的来说,这四个城市的第一产业增加值在 2012-2021 年间都有所增长,但增长速度较慢,且占总产值的比例相对较小。这可能反映了中国经济结构的转变,即从以农业为主转向以工业和服务业为主。此外,这也可能反映了这些城市在经济发展中的地位,它们都是中国的主要经济中心,因此,工业和服务业在这些城市的经济中占据主导地位。

2012-2022年中国主要城市第一产业增加值
#将四个城市2022年第一产业增加值进行合并,构造一个新的ndarray对象
four_china_city_f_2022=np.array([y_pred_bj_f,y_pred_sh_f,y_pred_gz_f,y_pred_sz_f])
four_china_city_f_2022=four_china_city_f_2022.flatten()
china_city_name=['北京','上海','广州','深圳']

#可视化
#……
plt.show()

16-中国主要城市2022年第一产业增加值.png

#通过漏斗图进一步更加直观的可视化
from pyecharts import options as opts
from pyecharts.charts import Funnel
#……

image.png

  • **广州:**广州的第一产业增加值最高,这可能反映了广州在农业和其他第一产 业领域的强劲发展。广州地处珠江三角洲,土地肥沃,气候适宜,非常适合农业 生产。
  • **北京:**尽管北京是中国的首都和一个主要的经济中心,但其第一产业增加值 仍然排在第二位。这可能反映了北京在农业和其他第一产业领域的稳定发展。
  • **上海:**上海的第一产业增加值排在第三位,这可能反映了上海作为中国的经 济中心,其经济结构已经从以农业为主转向以工业和服务业为主。
  • **深圳:**深圳的第一产业增加值最低,这可能反映了深圳作为中国的科技和创 新中心,其经济结构已经从以农业为主转向以高科技产业和现代服务业为主。
第二产业增加值
2012-2021年中国主要城市第二产业增加值
#先将北京2012-2021年的第二产业增加值取出
beijing_s=China_main_city['第二产业增加值(亿元)']['北京']
beijing_s=beijing_s.values
year=[i for i in range(2012,2022)]
#构建回归模型,预测北京2022年第二产业的增加值
model_bj_s=LinearRegression()
x_bj_s=np.array(year).reshape(-1,1)
y_bj_s=beijing_s
model_bj_s.fit(x_bj_s,y_bj_s)
x_new_bj_s=np.array([[2022]])
y_pred_bj_s=model_bj_s.predict(x_new_bj_s)
y_pred_bj_s
#将2022年北京第二产业增加值的预测值与前几年的数据合并,形成新的ndarray对象
bj_s=np.append(beijing_s,y_pred_bj_s)
print(bj_s)
#先将上海2012-2021年的第二产业增加值取出
shanghai_s=China_main_city['第二产业增加值(亿元)']['上海']
shanghai_s=shanghai_s.values
#构建回归模型,预测上海2022年第二产业的增加值
model_sh_s=LinearRegression()
x_sh_s=np.array(year).reshape(-1,1)
y_sh_s=shanghai_s
model_sh_s.fit(x_sh_s,y_sh_s)
x_new_sh_s=np.array([[2022]])
y_pred_sh_s=model_sh_s.predict(x_new_sh_s)
#将2022年上海第二产业增加值的预测值与前几年的数据合并,形成新的ndarray对象
sh_s=np.append(shanghai_s,y_pred_sh_s)
print(sh_s)
#先将广州2012-2021年的第二产业增加值取出
guangzhou_s=China_main_city['第二产业增加值(亿元)']['广州']
guangzhou_s=guangzhou_s.values
#构建回归模型,预测上海2022年第二产业的增加值
model_gz_s=LinearRegression()
x_gz_s=np.array(year).reshape(-1,1)
y_gz_s=guangzhou_s
model_gz_s.fit(x_gz_s,y_gz_s)
x_new_gz_s=np.array([[2022]])
y_pred_gz_s=model_gz_s.predict(x_new_gz_s)
#将2022年上海第二产业增加值的预测值与前几年的数据合并,形成新的ndarray对象
gz_s=np.append(guangzhou_s,y_pred_gz_s)
print(gz_s)
#先深圳海2012-2021年的第二产业增加值取出
shenzhen_s=China_main_city['第二产业增加值(亿元)']['深圳']
shenzhen_s=shenzhen_s.values
#构建回归模型,预测上海2022年第二产业的增加值
model_sz_s=LinearRegression()
x_sz_s=np.array(year).reshape(-1,1)
y_sz_s=shenzhen_s
model_sz_s.fit(x_sz_s,y_sz_s)
x_new_sz_s=np.array([[2022]])
y_pred_sz_s=model_sz_s.predict(x_new_sz_s)
#将2022年上海第二产业增加值的预测值与前几年的数据合并,形成新的ndarray对象
sz_s=np.append(shenzhen_s,y_pred_sz_s)
print(sz_s)

image.png

中国主要城市2022年第二产业增加值
#将中国四大主要城市第二产业增加值变成整型
bj_s_int=bj_s.astype(int)
list_bj_s_int=bj_s_int.tolist()
sh_s_int=sh_s.astype(int)
list_sh_s_int=sh_s_int.tolist()
gz_s_int=gz_s.astype(int)
list_gz_s_int=gz_s_int.tolist()
sz_s_int=sz_s.astype(int)
list_sz_s_int=sz_s_int.tolist()
from pyecharts import options as opts
from pyecharts.charts import Line
#将年份数据变成字符串类型
year= list(map(str, year)) 
#数据可视化处理
#……

image.png
从 2012 年到 2021 年,北京、上海、广州和深圳的第二产业增加值都有所增长,但增长速度和增长幅度各不相同。以下是各城市的具体情况:

  • **北京:**在供给侧结构性改革、创新驱动发展等国家重大战略措施推动下,第二产业由高速增长向高质量发展转变,装备制造业、高技术制造业迅速发展,成为第二产业的新生力量。2013—2021 年,第二产业增加值年均增长 6.0%。然而,2022 年,北京市第二产业增加值 6605.1 亿元,下降 11.4%。
  • **上海:**2013—2021 年,第二产业增加值年均增长 6.0%。2021 年,第二产业增加值 11449.32 亿元,增长 9.4%。然而,2022 年,第二产业增加值 11458.43 亿元,下降 1.6%。
  • **广州:**2013—2021 年,第二产业增加值年均增长 6.0%。2021 年,第二产业增加值 7722.67 亿元,增长 8.5%。
  • **深圳:**2013—2021 年,第二产业增加值年均增长 6.0%。2021 年,第二产业增加值 11338.59 亿元,增长 4.9%。
#将四个城市2022年第二产业增加值进行合并,构造一个新的ndarray对象
four_china_city_s_2022=np.array([y_pred_bj_s,y_pred_sh_s,y_pred_gz_s,y_pred_sz_s])
four_china_city_s_2022=four_china_city_s_2022.flatten()
four_china_city_s_2022_int=four_china_city_s_2022.astype(int)
list_four_china_city_s_2022_int=four_china_city_s_2022_int.tolist()

#可视化
#……

image.png

  • **深圳:**深圳的第二产业增加值排名第一,这可能反映了深圳作为中国的科技和创新中心,其经济结构已经从以农业为主转向以高科技产业和现代服务业为主。深圳的第二产业,特别是高科技产业,发展迅速,吸引了大量的投资和人才。
  • **上海:**上海的第二产业增加值排名第二,这可能反映了上海作为中国的经济中心,其经济结构已经从以农业为主转向以工业和服务业为主。上海的第二产业,特别是制造业和建筑业,发展稳健。
  • **广州:**广州的第二产业增加值排名第三,这可能反映了广州在农业和其他第一产业领域的强劲发展。广州地处珠江三角洲,土地肥沃,气候适宜,非常适合农业生产。
  • **北京:**尽管北京是中国的首都和一个主要的经济中心,但其第二产业增加值排名最低。这可能反映了北京在农业和其他第一产业领域的稳定发展。
第三产业增加值
2012-2022年中国主要城市第三产业增加值
#先将北京2012-2021年的第三产业增加值取出
beijing_t=China_main_city['第三产业增加值(亿元)']['北京']
beijing_t=beijing_t.values
#构建回归模型,预测北京2022年第三产业的增加值
model_bj_t=LinearRegression()
x_bj_t=np.array(year).reshape(-1,1)
y_bj_t=beijing_t
model_bj_t.fit(x_bj_t,y_bj_t)
x_new_bj_t=np.array([[2022]])
y_pred_bj_t=model_bj_t.predict(x_new_bj_t)
#将2022年北京第三产业增加值的预测值与前几年的数据合并,形成新的ndarray对象
bj_t=np.append(beijing_t,y_pred_bj_t)
print(bj_t)
#先将上海2012-2021年的第三产业增加值取出
shanghai_t=China_main_city['第三产业增加值(亿元)']['上海']
shanghai_t=shanghai_t.values
#构建回归模型,预测上海2022年第三产业的增加值
model_sh_t=LinearRegression()
x_sh_t=np.array(year).reshape(-1,1)
y_sh_t=shanghai_t
model_sh_t.fit(x_sh_t,y_sh_t)
x_new_sh_t=np.array([[2022]])
y_pred_sh_t=model_sh_t.predict(x_new_sh_t)
#将2022年上海第三产业增加值的预测值与前几年的数据合并,形成新的ndarray对象
sh_t=np.append(shanghai_t,y_pred_sh_t)
print(sh_t)
#先将广州2012-2021年的第三产业增加值取出
guangzhou_t=China_main_city['第三产业增加值(亿元)']['广州']
guangzhou_t=guangzhou_t.values
#构建回归模型,预测广州2022年第三产业的增加值
model_gz_t=LinearRegression()
x_gz_t=np.array(year).reshape(-1,1)
y_gz_t=guangzhou_t
model_gz_t.fit(x_gz_t,y_gz_t)
x_new_gz_t=np.array([[2022]])
y_pred_gz_t=model_gz_t.predict(x_new_gz_t)
#将2022年广州第三产业增加值的预测值与前几年的数据合并,形成新的ndarray对象
gz_t=np.append(guangzhou_t,y_pred_gz_t)
print(gz_t)
#先将深圳2012-2021年的第三产业增加值取出
shenzhen_t=China_main_city['第三产业增加值(亿元)']['深圳']
shenzhen_t=shenzhen_t.values
#构建回归模型,预测深圳2022年第三产业的增加值
model_sz_t=LinearRegression()
x_sz_t=np.array(year).reshape(-1,1)
y_sz_t=shenzhen_t
model_sz_t.fit(x_sz_t,y_sz_t)
x_new_sz_t=np.array([[2022]])
y_pred_sz_t=model_sz_t.predict(x_new_sz_t)
#将2022年深圳第三产业增加值的预测值与前几年的数据合并,形成新的ndarray对象
sz_t=np.append(shenzhen_t,y_pred_sz_t)
print(sz_t)

image.png
image.png
image.png
image.png

#将中国四大主要城市第三产业增加值变成整型
bj_t_int=bj_t.astype(int)
list_bj_t_int=bj_t_int.tolist()
sh_t_int=sh_t.astype(int)
list_sh_t_int=sh_t_int.tolist()
gz_t_int=gz_t.astype(int)
list_gz_t_int=gz_t_int.tolist()
sz_t_int=sz_t.astype(int)
list_sz_t_int=sz_t_int.tolist()
from pyecharts import options as opts
from pyecharts.charts import Line
#将年份数据变成字符串类型
year= list(map(str, year)) 
#数据可视化处理
#……

image.png

  • 北京: 2013 年至 2021 年,北京的第三产业增加值年均增速达到 7.4%,比国内生产总值(GDP)年均增速高 0.8 个百分点。2021 年,第三产业增加值占 GDP的比重为 53.3%,比 2012 年提高 7.8 个百分点。
  • 上海: 2021 年,上海的第三产业增加值为 31665.56 亿元,增长 7.6%。第三产业增加值占地区生产总值的比重为 73.3%2。2022 年,第三产业增加值占地区生产总值的比重提高到 74.1%。
  • 广州: 2012 年,广州的第三产业占 GDP 比重为 62.4%,2019 年超过 70%,2021 年提高到 71.6%。
  • 深圳: 2021 年,深圳的第三产业增加值为 19956.16 亿元,同比增长 2.4%。
中国主要城市2022年第三产业增加值
#将四个城市2022年第三产业增加值进行合并,构造一个新的ndarray对象
four_china_city_t_2022=np.array([y_pred_bj_t,y_pred_sh_t,y_pred_gz_t,y_pred_sz_t])
four_china_city_t_2022=four_china_city_t_2022.flatten()
four_china_city_t_2022_int=four_china_city_t_2022.astype(int)
list_four_china_city_t_2022_int=four_china_city_t_2022_int.tolist()


#可视化
#……

image.png

  • **北京:**北京的第三产业增加值排名第一,这可能反映了北京作为中国的首都 和一个主要的经济中心,其经济结构已经从以农业为主转向以服务业为主。北京 的第三产业,特别是高端服务业,发展迅速,吸引了大量的投资和人才。
  • **上海:**上海的第三产业增加值排名第二,这可能反映了上海作为中国的经济 中心,其经济结构已经从以农业为主转向以服务业为主。上海的第三产业,特别 是金融和商业服务业,发展稳健。
  • **广州:**广州的第三产业增加值排名第三,这可能反映了广州在农业和其他第 一产业领域的强劲发展。广州地处珠江三角洲,土地肥沃,气候适宜,非常适合 农业生产。
  • **深圳:**深圳的第三产业增加值排名最低,这可能反映了深圳作为中国的科技 和创新中心,其经济结构已经从以农业为主转向以高科技产业和现代服务业为主。
美国方面
第一产业(2022年美国及美国各州第一产业增加值)
#导入美国产业数据
USA_industry=pd.read_csv('./data/usa_states_gdp_by_industry.csv')
#取region_name_zh,industry_name_zh,'value_added这三列做成新的变量
USA_industry_new=USA_industry[['region_name_zh','industry_name_zh','value_added']]
USA_industry_new.head()
#取美国各州在第一产业增加值的数据,赋值新的变量
USA_industry_new_f=USA_industry_new[USA_industry_new['industry_name_zh']=='农业、林业、渔业和狩猎业']
USA_industry_new_f=USA_industry_new_f.dropna()
USA_industry_new_f
#各州的名字,以变量region_name_zh_1承接
region_name_zh_1=USA_industry_new_f['region_name_zh']
region_name_zh_1=region_name_zh_1.values
#各州的第一产业增加值,以变量f_value_added承接
f_value_added=USA_industry_new_f['value_added'].values
#将各州名称和各州第一产业增加值组成一个新的DataFrame对象
data_2022={'美国各州':region_name_zh_1,'2022年':f_value_added}
data_2022=pd.DataFrame(data_2022)
#绘图
def get_pl_bar2(data_2022):
    sort_info = data_2022.sort_values(by='2022年', ascending=True)
    #……
get_pl_bar2(data_2022)

image.png
通过 2022 年美国各州第一产业增加值的动态柱状图可以得出加利福尼亚州的第一产业增加值最高,这可能是由于该州的农业、林业、渔业等第一产业发达,特别是农业,加利福尼亚州是美国最大的农产品生产州。伊利诺斯州和明尼苏达州紧随其后,这两个州都以农业为主,特别是玉米和大豆的生产。北卡罗来纳州的第一产业增加值排在这四个州的最后,可能是由于该州的第一产业相对较弱,更侧重于制造业和服务业。

第二产业(2022年美国及美国各州第二产业增加值)
#取region_name_zh,industry_name_zh,'value_added这三列做成新的变量
USA_industry_new
#取美国各州在第二产业增加值的数据,赋值新的变量
USA_industry_new_s=USA_industry_new[(USA_industry_new['industry_name_zh'] == '采矿业') | (USA_industry_new['industry_name_zh'] == '公用事业')|(USA_industry_new['industry_name_zh'] == '建筑业')|(USA_industry_new['industry_name_zh'] == '制造业')]
USA_industry_new_s.head()
USA_industry_new_s=USA_industry_new_s.groupby('region_name_zh').sum()
USA_industry_new_s=USA_industry_new_s.reset_index()
USA_industry_new_s
USA_industry_new_s=USA_industry_new_s.drop(42,axis=0)
USA_industry_new_s
#各州的名字,以变量region_name_zh_2承接
region_name_zh_2=USA_industry_new_s['region_name_zh']
region_name_zh_2=region_name_zh_2.values
#各州的第二产业增加值,以变量s_value_added承接
s_value_added=USA_industry_new_s['value_added'].values
#将各州名称和各州第二产业增加值组成一个新的DataFrame对象
data_2022={'美国各州':region_name_zh_2,'2022年':s_value_added}
data_2022=pd.DataFrame(data_2022)
#绘图
def get_pl_bar2(data_2022):
    sort_info = data_2022.sort_values(by='2022年', ascending=True)
    #……
get_pl_bar2(data_2022)

image.png
德克萨斯州的第二产业增加值最高,这可能是由于该州的石油和天然气产业,以及其他制造业的发达。
加利福尼亚州紧随其后,这可能是由于该州的高科技产业,如硅谷的科技公司,以及电影和娱乐产业的发达。
伊利诺斯州、宾夕法尼亚州和俄亥俄州的第二产业增加值也较高,这可能是由于这些州的制造业和建筑业的发达。

第三产业(2022年美国及美国各州第三产业增加值)
#取region_name_zh,industry_name_zh,'value_added这三列做成新的变量
USA_industry_new
#取美国各州在第三产业增加值的数据,赋值新的变量
USA_industry_new_t=USA_industry_new[(USA_industry_new['industry_name_zh'] != '农业、林业、渔业和狩猎业') & (USA_industry_new['industry_name_zh'] != '采矿业') & (USA_industry_new['industry_name_zh'] != '公用事业') & (USA_industry_new['industry_name_zh'] != '建筑业')&(USA_industry_new['industry_name_zh'] != '制造业')]
USA_industry_new_t
USA_industry_new_t=USA_industry_new_t.groupby('region_name_zh').sum()
USA_industry_new_t=USA_industry_new_t.reset_index()
USA_industry_new_t
USA_industry_new_t=USA_industry_new_t.drop(42,axis=0)
USA_industry_new_t
#各州的名字,以变量region_name_zh_3承接
region_name_zh_3=USA_industry_new_t['region_name_zh']
region_name_zh_3=region_name_zh_3.values
#各州的第二产业增加值,以变量t_value_added承接
t_value_added=USA_industry_new_t['value_added'].values
#将各州名称和各州第三产业增加值组成一个新的DataFrame对象
data_2022={'美国各州':region_name_zh_3,'2022年':t_value_added}
data_2022=pd.DataFrame(data_2022)
#绘图
def get_pl_bar2(data_2022):
    sort_info = data_2022.sort_values(by='2022年', ascending=True)
    #……
get_pl_bar2(data_2022)

image.png
加利福尼亚州的第三产业增加值在所有州中最高,这可能是由于该州的经济多元化,包括娱乐、科技和农业等多个行业的发展。
纽约州和德克萨斯州分别位列第二和第三,这可能反映了这两个州在金融服务(纽约州)和能源生产(德克萨斯州)等领域的强势地位。
佛罗里达州和伊利诺斯州的第三产业增加值也相对较高,可能反映了这两个州在旅游业(佛罗里达州)和制造业(伊利诺斯州)等领域的重要性。

2022年美国第一、二、三产业增加值
#探究美国整个国家第一、第二和第三产业在2022年的增加值
USA_industry_new.head()
USA_all=USA_industry_new[USA_industry_new['region_name_zh']=='美国']
USA_all_f=USA_all.iloc[0,2]
USA_all_s=USA_all.iloc[1:5,2].sum()
USA_all_t=USA_all.iloc[5:16,2].sum()
USA_fst=np.array([USA_all_f,USA_all_s,USA_all_t])
USA_fst.flatten()
USA_fst_name=['第一产业','第二产业','第三产业']
#绘图
#……

image.png
这些数据显示,美国的第三产业增加值最高,远超过第一产业和第二产业。这反映了美国经济的主要驱动力是服务业,而不是制造业或农业。这也符合发达国家的典型经济结构,其中服务业通常占据主导地位。然而,这并不意味着第一产业和第二产业不重要。事实上,这些产业在提供就业、支持出口和推动创新等方面发挥着关键作用。总的来说,这些数据揭示了美国经济的多元性和复杂性。每个产业都在其自身的领域内发挥着重要作用,共同推动着美国经济的发展。

基于历史数据,预测未来五年中美两国的经济发展趋势

中国方面

我们首先对数据集中的中国 2012-2022 主要城市生产总值制作简单的折线图进行查看;发现数据整体上呈现线性增长,由此,我们先用简单一元线性回归,对未来趋势进行预测。

b=a.groupby("年份").sum()
c=b.iloc[:,:1]
#……

26-中国2012-2022主要城市生产总值.png
结合历史数据,不难发现,此模型得出的数据下,在继 2020-2021 年的较大幅度增长后,2022-2026 年呈现的主要城市生产总值增长放缓。很明显,虽然过往 10 年的增长线符合一元方程;但是考虑到 2020-2021 年的较大幅度增长;一元线性回归中的增长放缓似乎不具有足够的说服力。

k=pd.DataFrame(c.index)
k.astype('float')
c.astype('float')
x = [[2012],[2013],[2014],[2015],[2016],[2017],[2018],[2019],[2020],[2021]]
y = c.iloc[:,0]
from sklearn.linear_model import LinearRegression
regr=LinearRegression()
regr.fit(x,y)#训练数据
X = [[2012],[2013],[2014],[2015],[2016],[2017],[2018],[2019],[2020],[2021]]
Y = c.iloc[:,0]

from sklearn.preprocessing import PolynomialFeatures
poly_reg = PolynomialFeatures(degree=2)  # 注意:增加了此行
X_ = poly_reg.fit_transform(X)  # 相当于先fit,再transform()。得到新的X_
X_[0:10]

import statsmodels.api as sm
X2 = sm.add_constant(X_)  # 这里传入的是含有x^2的X_
est = sm.OLS(Y, X2).fit()
est.summary()  #

regr = LinearRegression()
regr.fit(X_, Y)

from sklearn.preprocessing import PolynomialFeatures
poly_reg = PolynomialFeatures(degree=2)
X_ = poly_reg.fit_transform([[2022],[2023],[2024],[2025],[2026]])

regr.predict(X_)
pr={'地区生产总值(当年价格)(亿元)':{'2022':457673.38      , '2023':482719.506     , '2024':507765.632,'2025':532811.75799999,'2026':557857.884}}
pre=pd.DataFrame(pr)

pr1={'地区生产总值(当年价格)(亿元)':{'2022':471340.42     , '2023':503841.29    , '2024':537584.63,'2025':572570.42,'2026':608798.67256784}}
pre1=pd.DataFrame(pr1)

C1=c.append(pre1)

#……

27-地区生产总值(当年价格)(亿元):预测.png
于是,我们采用了更加深入的研究,在将预测模型改为采用二元方程进行拟合以后,数据是否变得符合常识和预期;其 2022 年及随后的增长预期符合延续 2020-2021 年的较大幅度增长。

C=c.append(pre)
#……

28-地区生产总值(当年价格)(亿元):预测.png
image.png

P1=P
plt.figure(figsize=(20,8))
#……

为了进一步进行对比和分析,我们又研究了促进生产总值有较大作用的房地产业(2024 年上半年,房地产开发投资占全国固定资产投资的比重为28.6%,房地产业增加值占国内生产总值(GDP)的比重为 7.1%,房地产相关行业(包括建筑业、金融业、制造业等)对 GDP 的拉动作用为 24.4%。)在过去10 年的增长情况。

x = [[2012],[2013],[2014],[2015],[2016],[2017],[2018],[2019],[2020],[2021]]
y = P.iloc[:,8]
from sklearn.linear_model import LinearRegression
regr=LinearRegression()
regr.fit(x,y)#训练数据
y=regr.predict([[2022],[2023],[2024],[2025],[2026]]) 
#……

32-商品房销售面积-平均销售价格.png
就商品房销售面积(万平方米)*平均销售价格(万元/平方米)进行绘图;不 难发现 2021年的增长斜率已经放缓;考虑到传导作用,其效果会在约 6-12 个 月内通过各行业,反映在 GDP 上;再通过研判房地产开发投资额(亿元);无疑 也呈现了放缓的趋势,通过建筑业 2 到 3 年的建设周期来看,房地产开发投资 额增长的下降一定程度上会在3-5 年后反应在 GDP 增长率的下降上。

plt.figure(figsize=(20,10))
P3=P.iloc[:,11]
#……

33-房地产开发投资额.png
由此,就 2021 年截至的数据来看;虽然我们可以认为二元方程很好的‘继承“了 2021 年的生产总值增长率,但是考虑到作为经济增长支柱之一的房地产业在发展上呈现的降温,一元线性回归拟合的简单线条,在短期内似乎更具说服力。当然,从长期趋势来看,在 2015-2021 年间,我国户籍人口增长和住户存款余额还是保持了强劲的势头,如果政府能以恰当的政策鼓励消费,促进房地产业良性循环,仅就数据集而言,得益于我国房地产业可能的正常发展;我国主要城市生产总值还是可以在预期的 2024 年及以后维持 2021 年期间的较高增长率。

P1=P.iloc[:,8]
plt.figure(figsize=(15,10))
#……

P2=P.iloc[:,6]
plt.figure(figsize=(15,10))
#……

30-住户存款余额.png31-2012-2022年末户籍人口.png

美国方面

再看美国,由于数据集中只给出了 2022 年的数据,所以我们引述了世界银
行在 2012-2021 年美国 GDP 进行分析。

A = pd.DataFrame([[2012, 16571.15],
                  [2013, 16843.20],
                  [2014, 17550.69],
                  [2015, 18206.02],
                  [2016, 18695.11],
                  [2017, 19477.34],
                  [2018, 20533.06],
                  [2019, 21380.98],
                  [2020, 21060.47],
                  [2021, 23315.08],
                  [2022, 25462.27]],
                  
                 columns=['A', 'B'])

A.set_index('A', inplace=True)
#……

59-美国2012-2022主要州生产总值.png
和上述分析步骤一样,我们通过一元线性回归方程和二元线性回归方程进行拟合并研判。

x = [[2012],[2013],[2014],[2015],[2016],[2017],[2018],[2019],[2020],[2021],[2022]]
y = A.iloc[:,0]
from sklearn.linear_model import LinearRegression
regr=LinearRegression()
regr.fit(x,y)#训练数据

y=regr.predict([[2023],[2024],[2025],[2026]]) 
print(y)
pr={'B':{'2023': 24775.59709091    , '2024':25585.23645455,'2025':26394.87581818,'2026':27204.51518182}}
pre=pd.DataFrame(pr)
print(pre)

A1=A.append(pre)
print(A1)
#……

61-地区生产总值(当年价格)(亿元):预测2.png

X = [[2012],[2013],[2014],[2015],[2016],[2017],[2018],[2019],[2020],[2021],[2022]]
Y = A.iloc[:,0]
from sklearn.preprocessing import PolynomialFeatures
poly_reg = PolynomialFeatures(degree=3)  # 注意:增加了此行
X_ = poly_reg.fit_transform(X)  # 相当于先fit,再transform()。得到新的X_
X_[0:10]

import statsmodels.api as sm
X2 = sm.add_constant(X_)  # 这里传入的是含有x^2的X_
est = sm.OLS(Y, X2).fit()
est.summary()

regr = LinearRegression()
regr.fit(X_, Y)

from sklearn.preprocessing import PolynomialFeatures
poly_reg = PolynomialFeatures(degree=3)
X_ = poly_reg.fit_transform([[2023],[2024],[2025],[2026]])

regr.predict(X_)

pr1={'B':{ '2023': 27316.848526    , '2024':29950.05073547,'2025': 33118.82844543,'2026': 36883.89414978}}
pre1=pd.DataFrame(pr1)
print(pre1)



A11=A.append(pre1)
#……

60-地区生产总值(当年价格)(亿元):预测.png
对于中美两国历史数据,基于不同的拟合方式得出了不同结论。由于提供的美国为时间截面,且缺乏详细的各产业历史数据支持;我们只能大致给出趋势预判。尤其是考虑到国际局势,地缘政治和 2019-2022 年新冠疫情期间各国负债率的增加,对于生产总值的预测会不可避免的更加模糊。

探索影响中美两国经济发展的主要因素(产业结构)

中国方面

由数据集,探究 1997-2018 年地区生产总值(亿元)与第一产业增加值,第二产业增加值比较,得出下图,由于存在缺失值导致生成的图表出现了错误点;整体上不影响。

b=pd.read_excel('./data/1997—2018年县域社会经济主要指标面板数据.xlsx')
print(b.head())
b.info()
b.isnull().sum()
b.fillna(method ='pad',inplace=True)
b.isnull().sum()
print(b.head())


a1=b.iloc[:,[0,12,13,14]]
a2=a1.groupby('年份').sum()
a2=a2.iloc[:,0:4]/10000
a2.rename(columns={'第一产业增加值_万元':'第一产业增加值(亿元)'},inplace=True)
a2.rename(columns={'第二产业增加值_万元':'第二产业增加值(亿元)'},inplace=True)
a2.rename(columns={'地区生产总值_万元':'地区生产总值(亿元)'},inplace=True)
print(a2)

a3=a2.groupby('年份').sum()
a3.loc[2011,'地区生产总值(亿元)']='185545'
a3.loc[2012,'地区生产总值(亿元)']='206748'
#……

41-1997-2018年地区生产总值(亿元)与第一产业增加值,第二产业增加值比较.png
由图可得,1997-2018 年间,地区生产总值由 2000 年前后的平稳增长到以2005 前后,开始增长;其中第一产业(农业)相关产值增长速度保持平稳;第二产业(制造业)相关产值由 2000 年前后的平稳增长到 2005 前后,增长率提高并在未来 13 年内保持该速度一直增长。虽然数据集没有清晰的给出第三产业(服务业)的详细产值,但通过相减,不难发现在 2010 年前后,第三产业产值开始高速增长。
以 1997 和 2018 两个时间节点为截面可以看出大量来自第一产业的资源被转化为了促进第三产业发展的资本,使得第三产业在 1997 年对生产总值的贡献率由 29.10%增加到了 42.26%。

a6=pd.DataFrame([['第一产业增加值','13136.2100'],['第二产业增加值','17097.7800'],['第三产业增加值','12406.71']])
plt.rcParams['font.size'] = 16
#……

42-1997年县域社会经济生产总值构成.png

a7=pd.DataFrame([['第一产业增加值','55066.0639'],['第二产业增加值','213409.1340'],['第三产业增加值','196488.8021']])
plt.figure(figsize=(20,8))
#……

43-2018年县域社会经济生产总值构成.png
和这种转变相辅相成的是在这 20 年内不断增加的居民储蓄余额和贷款余额,从经济学视角;这无疑为创造良好商业金融环境打下了基础,助力了 05 年以后的经济腾飞。

h6=b.iloc[:,[0,9]]
plt.figure(figsize=(20,8))
H41=h6.groupby('年份').sum()
#……

50-1997-2016户籍人口_万人与居民储蓄存款余额(亿元).png
不过同时,在此类视角下,我国经济发展也存在一定的不平衡不充分。在1997-2016 年间,我国户籍人口在高速增长中,由 9.2 亿人增长到了 12 亿人;不过在医疗床位数上,至 2000 年前后到达一个稳定水平后,就一直在该范围波动;不过同时也要考虑到农民工现象的存在,因此无法单就此类数据给出确切结论;只能说单看户籍人口与床位相对数,忽略地理变化,此数字在波动下降。

h5=b.iloc[:,[0,30]]
H3=h5.groupby('年份').sum()/10000
#……

48-医疗卫生机构床位数.png
同期下,随着城市化和第一产业的回报周期长,利润低的影响,我国粮食产量一直处于波动状态,考虑到科技进步和人口的增长,此类波动实际上以人均水平来看,实际上在逐年下降。不过当然不排除由于东南亚等地由于粮食的低廉价格,导致我国一定的食物倾。

h3=b.iloc[:,[0,20]]
H1=h3.groupby('年份').sum()/10000
#……


h4=b.iloc[:,[0,23]]
H2=h4.groupby('年份').sum()/10000
#……

47-肉类总产量.png46-粮食总产量.png
向于由国外进口;此外由于经济发展,我国更愿意消费具有异国口味的食品,一定程度上减少对我国食物生产的需求。
但可以认定的是,我国农村壮年人口在大量流失,由我国人口不断增加的人口背景下,县域中小学在校学生却在不断下降。另外,出于可能存在的众多原因,小学至普通中学的升学率在 2000 年提高后又出现了降低的趋势。

fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(12,5))
h6=b.iloc[:,[0,27]]
H4=h6.groupby('年份').sum()/10000

plt.plot(H4,label='普通中学在校学生数_万人')
h7=b.iloc[:,[0,28]]
H5=h7.groupby('年份').sum()/10000
#……

51-县域中小学在校学生.png

美国方面

由于同期美国数据集为截面,因此做出 2022 年美国主要州各行业生产总值分类。

I=pd.read_csv('./data/usa_states_gdp_by_industry.csv')
print(I.head(20))

p=I.groupby('region_name').head(100)
print(p[p.code.str.startswith('NV')])

I.head()
#……

62-2022 年美国主要州各行业生产总值分类.png
总结来看;我国在过去 20 年内由于第二、三产业的逐渐成熟,消费市场不断扩大等原因,我国生产总值高速发展;不过由于发展期诸多的因素使得我国产业结构存在优化空间,地区发展不平衡不充分;人口素质还有待提升。如果将此类问题能够有效化解,无疑可以为我国经济发展注入良心动力,步入可持续循环。例如开展供给侧改革,减少产能,提升行业质量等行动,不仅没有减少规模以上工业企业产值,反正助力其可持续发展;将资源放在刀刃上,实现行业良性发展。

h6=b.iloc[:,[0,24]]
H4=h6.groupby('年份').sum()
#……

49-规模以上工业企业单位数_个和产值(亿元).png
虽然相比美国,我国农业占比远高于其;但考虑到我国人口数量大,农业产值区域性不平衡;低廉农产品为我国劳动力供给打下基础;二三产业还在发展探索期,金融领域面临不成熟在内的诸多问题;在此阶段还应该提升农业自主性而不能向美国一样减少农业产业占比。

再探中美两国经济发展下的产业结构

中国方面

在中国方面上分析 2012-2021 年的产值平均值。

k=a.groupby("城市").sum()
g1=k.sort_values(["地区生产总值(当年价格)(亿元)"],ascending=False)
print(g1)


P=a.groupby("年份").sum()
print(P)

P1=P
plt.figure(figsize=(20,8))
#……

29-2012-2021年中国主要城市生产总值和构成.png
按平均值绘制拼图,我国第一、二产业占比大于美国,第三产业占比低于美国。

a.iloc[:,3].sum()
g=g1.iloc[:,1:4].sum()
#……

34-中国主要城市各产业生产总值占比.png
对于生产总值大于 10000 亿的城市,其第一、二产业产值低于平均值,第三产业高于平均值。这些城市包括北京、上海、广州、深圳、重庆、武汉等。

g=g1.iloc[0:11,1:4].sum()
plt.rcParams['font.size'] = 16
colors1 = ['cornflowerblue', 'lightsteelblue', 'royalblue']
#……

35-生产总值大于100000的城市各产业生产总值占比.png
对于生产总值大于 5000 亿,小于 10000 亿的城市,其第一、二产业产值高 于平均值,第三产业低于平均值。这些城市包括济南、大连、西安、合肥等。

g=g1.iloc[12:23,1:4].sum()
colors2 = ['teal', 'cyan', 'c']
#……

36-生产总值大于50000的城市各产业生产总值占比.png
对于生产总值低于 5000 亿的城市,其第一、二产业产值略高于平均值,第三产业低于平均值。这些城市包括贵阳,乌鲁木齐、拉萨、厦门等。

g=g1.iloc[24:,1:4].sum()
colors3 = ['lightgreen',  'lime','forestgreen']
#……

37-其余的城市各产业生产总值占比.png
接下来分析 2021 年的生产总值构成,总体情况见下:

l6=l3.iloc[:,3:6].sum()
plt.rcParams['font.size'] = 16
colors1 = ['cornflowerblue', 'lightsteelblue', 'royalblue']
#……

40-2021年主要城市各产业生产总值占比.png
以北京、上海、广州、深圳、重庆为代表的单年生产总值大于 25000 的城市产业构成如下。其中第一产业占比接近美国 2022 年的平均水平,同时第三产业产值仍然远低于美国 2022 年平均水平。其余的城市单年生产总值低于 25000 的城市产业构成如下。符合图 6-5 的整体趋势。

l3=a[a.年份.str.endswith('2021')]
l4=l3[l3['地区生产总值(当年价格)(亿元)']>25000]
l5=l4.iloc[:,3:6]
l6=l3[l3['地区生产总值(当年价格)(亿元)']<25000]
l7=l6.iloc[:,3:6]
print(l3)

l5=l4.iloc[:,3:6].sum()
plt.rcParams['font.size'] = 16
#……

l8=l7.sum()
colors3 = ['lightgreen',  'lime','forestgreen']
#……

39-2021年其余的城市各产业生产总值占比.png38-2021年生产总值大于25000的城市各产业生产总值占比.png

美国方面

根据分类标准,将“农业、林业、渔业和狩猎业”划分为第一产业,将“采矿业、公用事业、建筑业、制造业”划分为第二产业,其余划分为第三产业;可得美国主要州的生产总值按照产业结构的分布。

plt.rcParams['font.size'] = 16
#……

63-美国州各产业生产总值占比.png
同时,按照典型州进行分类,分别查看加利福尼亚州,内华达州和密西西比州的产业分布。
其中 2018 年 5 月 7 日,美国商务部公布的数据显示,加利福尼亚州(CA)2017 年的实际 GDP 增长了 3.4%,达到 2.747 万亿美元,这意味着如果把加州视为一个独立经济体的话,它的经济规模首次超过了英国排到全球第五。加利福尼亚州是美国农业最发达的州。农业用地占全州 30%。主要为灌溉农业。农牧产品多达几百种。甘蔗、蔬菜、水果产量居全国突出地位,棉花产量第二;稻米产量第二;为全国重要的牛奶、蛋、肉产区;中央谷地是最富庶的农业地带。林业发达,为全国三大木材生产州之一。渔业产值全国第一,圣弗朗西斯科、圣迭戈及圣佩德罗为重要渔港。
制造业发达,部门齐全,产品种类繁多,产值及就业人数均居全国第一。
主要有航天、电子等新兴部门及炼油、石化、军火、食品加工、造纸、印刷业等。矿业中石油和天然气开采占总产值的 2/3。洛杉矶地区为西部最大的制造业中心,以航天及石油开采业为主;产值约占全州 50%;圣弗朗西斯科及圣迭戈也是重要的制造业中心。硅谷圣克拉拉谷地以电子工业发达着称,中央谷地为食品加工业中心。高速公路网络密布,长度居全国第二。为 3 条横贯大陆铁路干线的西部端点。萨克拉门托河三角洲上河网密布、水运发达。洛杉矶和圣弗朗西斯科是重要的国际航空港。

p1=I.iloc[[80,],6].sum()
p2=I.iloc[81:84,6].sum()
p3=I.iloc[85:95,6].sum()
P1=pd.DataFrame([['第一产业',p1],["第二产业",p2],["第三产业",p3]])
#……

64-CA各产业生产总值占比.png
2011 年内华达州 GDP 为 1303 亿美元,列美国 50 州第 32 位,占全美 GDP比重 0.87%。人均 GDP47870 美元;其多数土地贫瘠,主要出口商品为基础金属产品,工业机械和电子设备。同时世界知名的娱乐城拉斯维加斯坐落在内华达州。

n1=I.iloc[[464,],6].sum()
n2=I.iloc[465:468,6].sum()
n3=I.iloc[469:479,6].sum()
M1=pd.DataFrame([['第一产业',n1],["第二产业",n2],["第三产业",n3]])
#……

66-NV各产业生产总值占比.png
密西西比州在美国人均 GDP7.02 万美元的条件下,它的人均 GDP 仅为 4.6 万美元,排名美国全部 50 个州的倒数第一。密州土地肥沃辽阔,森林覆盖率高 (50%以),气候温和宜人,四季皆可耕种,传统上为农业州,曾是美棉花主 要产地(美国内战前因盛产棉花而成为全美第五大最富裕的州)。现主要农作 物包括大豆、棉花、大米等。密州海岸线辽阔,河流纵横,水产资源十分丰 富,渔业、捕虾业和家禽饲养业发达。石油、天然气、褐煤、石灰石以及硬木 和软木森林等自然资源丰富。

m1=I.iloc[[400,],6].sum()
m2=I.iloc[401:404,6].sum()
m3=I.iloc[405:415,6].sum()
M1=pd.DataFrame([['第一产业',m1],["第二产业",m2],["第三产业",m3]])
#……

65-MS各产业生产总值占比.png
不难发现,由于历史原因;自然气候和区位因素之间的差异,美国的这 3州因为各种独特因素形成了类似加利福尼亚的典型的美国式生产总值结构和内华达与密西西比州有别与美国生产总值结构差异较大的产业结构。

  • 30
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神仙别闹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值