4、语言、认知与自我构建:从理论到实践的深入探讨

语言、认知与自我构建:从理论到实践的深入探讨

语言,作为人类交流与认知的重要工具,一直以来都是众多学者研究的焦点。不同学者从各自的角度出发,对语言的本质、功能以及其与人类认知和自我构建的关系进行了深入的探讨。

1. 语言意义的情境性与辩证性

Voloshinov 反对将语言视为纯粹机械的概念,他认为单词的意义是由其上下文决定的。如果将单词的意义固定下来并脱离上下文进行孤立研究,语言学家就会创造出“反映在语言中的现实独特部分的虚构”。当个体出生时,他们并非接收现成可用的语言,而是进入言语交流的洪流,只有当他们沉浸其中时,意识才会觉醒并开始运作。Voloshinov 指出,作为规范系统的语言只是一种抽象概念,不能作为理解和解释语言事实的基础,因为语言事实是鲜活且不断演变的。他提出,语言的真正本质是语言中客观主义和主观主义的辩证综合,即使是主观的言语表达也具有社会性质。

在言语表达过程中,不仅语言形式(如单词、形态和句法形式、声音、语调)参与其中,非语言元素也是组成部分。如果忽视这些元素,我们将无法评估具体的言语表达,进而导致理解意义的失败,而理解意义是语言学中最具挑战性的主题之一。Voloshinov 认为理解不能是被动的,在这个过程中没有什么是稳定不变的,意义这一抽象元素会被上下文吸收,并被其内在矛盾撕裂,最终以具有同样临时稳定性和同一性的新意义形式回归。

2. Wallon 对身体整体性现象的研究

语言具有生物学基础,这一点在符号系统中也有所体现。心理学家 Henri Wallon 在 1934 年观察到,自然智能的一个重要功能是包含一个符号系统,使个体能够获得“自身身体”作为身体整体性的概念。身体整体性只有在“心理生活计划”与不同操作

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值