数据仓库(四)之ETL开发

概述
ETL是数据仓库的后台,主要包含抽取、清洗、规范化、提交四个步骤,传统数据仓库一般分为四层模型。 

                         

分层的作用 

                                                                      

STG层
 在维度建模阶段已经确定了源系统,而且对源系统进行了数据评估。STG层是根据CDC策略把各个源系统的数据抽取到数据仓库中。STG层主要是面向批处理的形式,如果是根据日志信息实时同步,可以跳过STG层直接进入ODS层。

STG的作用 
                                     

开发步骤 
确定CDC策略,根据源系统的数据状况选择一个合适的CDC策略。
设计Mapping文档。
设计物理模型,STG的物理模型一般包括源系统的所有字段和审计字段,例如:源系统名称,源表名称,加载时间,加载方式。可以去掉其他约束条件,比如主键、索引,默认值。如果源表和目标表的数据库类型不同,最好字段长度要进行扩充,一般目标表的数据类型就选择几种常用,长度就选择几个固定的长度。
抽取数据,STG层面向异构数据源,最好选择用ETL工具,一般ETL工具都支持多种数据源。STG层不做数据转换。
加载数据,STG层一般保留7天或一月的数据。
 ODS层
ODS层是把STG层数据进行历史存档,保留源系统的所有历史数据,如果是流式的,可以跳过STG层,实时同步到ODS层。 

ODS层的作用 
                                                 

开发步骤 
设计Mapping文档。
设计物理模型,ODS的物理模型一般包括源系统的所有字段和审计字段,但是和源系统最主要的区别是ODS层加了逻辑删除标记和增量时间戳。因为很多源系统都可能进行物理删除数据,即使有逻辑删除标记,但是也可以在后台人工删除数据。
抽取数据,ODS层从STG层抽取数据,在同一个数据平台上,可以采用ETL工具,也可以手工编码。
加载数据,进行数据比较,判断是否有物理删除情况,如果有打上删除标记。ODS层保留全量数据。
 
DW层
DW层是清洗、规范化,提交一致化维度和事实的工作区,建立反规范化的维度模型。 

数据清洗
 数据清洗是发现数据质量问题并纠正数据的过程,通用的方法是戴明质量环

                                                             

主要步骤                                          
1.定义数据质量需求,根据业务需求和数据剖析结果确定数据质量需求的优先级。

2.制定数据质量测量类型

3.提交数据质量测量结果表,通常异常数据处理策略有 

                               

4.纠正数据

                                                                  

 

规范化
由于数据仓库的数据来源各个业务系统,每个业务系统相对都是封闭的,他们在命名、取值上都有自己的特点。规范化就是经过标准化、去重、合并、拆分、整合等过程把各个业务系统的数据统一命名,统一取值,建立企业标准版本数据。 

主要步骤 
1.数据标准化

从数据的内容、格式、命名、计算规则等输出为唯一的版本数据,把各个源系统的相同描述对象但是不同取值进行统一,比如:性别字段,有的源系统用0和1或Man和Wonen。通过映射表统一命名为M和F。

2.删除重复数据

如果源系统中存在重复数据或者多个源系统维护了相同对象的数据,这时候就要根据保留规则,删除重复数据,只保留唯一的一条数据。

3.数据共存

把各个业务系统的数据经过拆分、合并、整合。例如相同的客户号,二个源系统都维护了这个客户的联系方式,这时候就要根据业务规则来选择保留哪那个源系统的值。 

提交维度表和事实表
 

提交维度表主要步骤 
1.确认粒度

维度表的粒度就是表的业务主键,根据业务主键来判断记录的唯一性。

2.选择代理键生成器

ETL工具和数据库都有设置字段自增长的功能。

3.选择维度表类型

根据业务系统的实际情况选择合适的维度表类型,一般采用缓慢变化维类型1和类型2。

4.增量加载维度数据

维度表的每个字段都要设置默认值,不能为空。首次加载的时候要有一条代理键为-1的默认记录,为了防止事实表查找不到代理键。

缓慢变化维处理流程


5.生成代理键管道

为了生成事实表的维度代理键,一般会建一个查找维表,查找维表包含业务主键和代理键的映射关系。 

提交事实表主要步骤 
1.选择事实表类型 

根据业务需求选择合适的事实表类型,一般会先建最细粒度的事务事实表,根据事务事实表建周期快照或累积事实表。

2.用代理键替换主键

根据事实表中维表的业务主键关联查找维表替换成代理键,如果关联不上设置为-1。

 3.增量加载事实数据

事实表的每个字段不能为空,事实表主要包含事实粒度的业务主键、维表业务主键、维表代理键、源表的主键、逻辑删除标识和事实。便于重新加载事实表和问题跟踪。由于事实表的数据量大,一般采用分区的方式进行存储。

4.提交错误事实表

把加载事实表的拒绝记录存储在错误事实表中,以便进行数据质量跟踪。

5.事实表合并

一级事实表都是根据单个业务过程建立的,为了便于分析和重用,需要把多个业务过程的事实表进行合并,形成二级事实表。

6.事实表归档

随着时间的推移,事实表中会存放大量的历史数据,如果这些数据很少再出现在统计分析中,需要把这些数据迁移到其他表中或以文件格式存储。

 维度和事实数据修正
1. 纠正事实

消除事实,新增一条和原纪录的度量乘以-1的值,这样就能消除原纪录的汇总带来的影响。

更新事实,直接在原纪录上更新。

删除事实,删除事实包含物理删除和逻辑删除,一般采用逻辑删除。

2.优化和更正事实表主要有

在事实表中新增事实,历史数据设置为默认值。

在事实表中新增维度,历史数据设置为-1。

维度表中新增属性,历史数据为默认值。

修改维表和事实表的粒度大小。

3.处理延迟的事实

如果业务系统出现补录的事务数据,这时候就要根据维度表中的开始日期和结束日期选择合适的代理键。

4.维度重建

如果需要维度表重新加载,就要重新生成查找维表和更新事实表的代理键,因为事实表已经存储了维表的业务主键,可以根据查找维表生成代理键。

DM层
DM层根据业务需求把DW层数据进行聚合或生成宽表。 

1.创建聚合事实表 

前台展现的数据一般都是聚合后的数据,聚合后的数据量比最细粒度的事实表小很多,查询性也有很大的提升。

创建聚合表的方法 

1.增量加载,创建聚合表,增量加载聚合表。

2.聚合导航,用户通过报表分析工具,根据用户请求把基础事实表自动生成聚合数据。

 3.物化视图,创建物化视图定时刷新聚合表。

 2.创建缩小维度表

由于聚合事实表的粒度和基础事实表粒度不同,需要创建和聚合表相同粒度的维度表,这些维度表只是基础维度表的缩小版。

ETL优化
 1.减少磁盘I/O

 关联查询的时候,尽可能把无效的数据过滤掉

只查出需要的列

大数据量尽量不要有排序

在加载数据时关闭日志

 2.分区和并行

大数据量可以进行分区

查询和任务调度都可以进行并行处理

 3.增量加载

 4.增加索引

5.大而化小,复杂的查询可以分成多个子任务来执行。

6.重用结果集,把多个查询任务的共用数据可以单独建临时表。
————————————————
版权声明:本文为CSDN博主「mark_wu2000」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/mark_wu2000/article/details/82730049

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值