寻找最小拥塞生成树
在图论的研究中,寻找最小拥塞生成树是一个具有实际应用价值的问题。本文将详细介绍如何在给定图 $G$ 中找到 $k$ 个生成树,使得总权重最小,同时考虑边的拥塞情况。
1. 问题引入
设 $G = (V, E)$ 是一个具有 $n$ 个顶点和 $m$ 条边的无向加权图,$k$ 为正整数。边的权重函数用 $w$ 表示,且所有权重均为正整数。我们扩展边的权重函数,引入一个整数参数 $i$($0 \leq i \leq k$),称 $w_p(e, i)$ 为边 $e$ 在给定 $i$ 值下的惩罚权重,$i$ 为边 $e$ 的使用次数。
我们的目标是在图 $G$ 上找到 $k$ 个生成树 $T_1, T_2, \cdots, T_k$(不一定不相交),使得边 $e$ 的使用次数等于包含该边的树的数量,并且所有边的惩罚权重之和最小。如果对于所有 $i > 1$,$w_p(e, i) = \infty$,则该问题变为寻找 $k$ 个不相交的最小总权重生成树的问题。我们将这个一般问题称为最小拥塞 $k$ - 生成树问题($k$MSTc),因为惩罚函数可以用来模拟拥塞情况。
2. 理论结果总结
| 算法 | 运行时间 |
|---|---|
| 精确算法 | $O(m \log m + k^2n^2)$ |
| A - Prim | $O(k(m + n \log n))$ |
订阅专栏 解锁全文
18

被折叠的 条评论
为什么被折叠?



