给定一个 1×n 的方格棋盘。
其中,一些方格上没有棋子(用 0 表示),一些方格上放有棋子(用 1 表示)。
现在,你可以挑选棋盘中不超过 k 个空方格,在其中放上棋子。
我们的目标是让棋盘中最长的连续相邻棋子段的长度尽可能大。
连续相邻棋子段:一段棋子连续相邻的排列在一起,中间没有空方格将它们隔开。
输出最长连续相邻棋子段的最大可能长度以及最终的棋盘盘面。
输入格式
第一行包含两个整数 n,k。
第二行包含 n 个整数 a1,a2,…,an,其中 ai 用来表示左起第 i 个方格的状态,0 表示方格上没有棋子,1 表示方格上有棋子。
输出格式
第一行输出一个整数,表示最长连续相邻棋子段的最大可能长度。
第二行输出一个可能的最终棋盘盘面。
如果答案不唯一,输出任意合理答案均可。
数据范围
前 6 个测试点满足 1≤n≤10。
所有测试点满足 1≤n≤3×10^5,0≤k≤n,0≤ai≤1。
输入样例1:
7 1
1 0 0 1 1 0 1
输出样例1:
4
1 0 0 1 1 1 1
输入样例2:
10 2
1 0 0 1 0 1 0 1 0 1
输出样例2:
5
1 0 0 1 1 1 1 1 0 1
//双指针计算一段字符串中 1 的个数,如果该段字符串中 0 的数量小于等于 k ,则保存该长度。
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner scan=new Scanner(System.in);
int n=scan.nextInt();
int k=scan.nextInt();
int[] a=new int[n];
int len=0;
int l=0,r=0;
for(int i=0;i<n;i++) {
a[i]=scan.nextInt();
}
for(int i=0,j=0,zero=0;i<n;i++) {
if(a[i]==0) {
zero++;
}
while(zero>k) {
if(a[j]==0) {
zero--;
}
j++;
}
int len1=i-j+1;
if(len1>len) {
len=len1;
l=j;
r=i;
}
}
System.out.println(len);
if(k>0) {//如果k=0,那么就不能将字符串中的0变为1
for(int i=l;i<=r;i++) {
a[i]=1;
}
}
for(int i=0;i<n;i++) {
System.out.printf(a[i]+" ");
}
}
}