混合智能系统中的知识表示与模糊规则提取
1. 混合智能系统概述
在人工智能领域,传统的符号系统在知识表示和推理方面有着悠久的历史,而连接主义系统在近年来也取得了显著的进展。混合智能系统结合了连接主义和符号系统的特点,旨在充分发挥两者的优势。
连接主义系统,如人工神经网络和模糊神经网络,具有处理分布式任务、处理不完整和嘈杂数据的能力,并且在数据丰富而知识有限的情况下,学习能力起着核心作用。例如,在自然语言处理、常识推理和多智能体系统中,高级连接主义都取得了良好的效果。
符号知识系统则具有人类可解释性、显式控制和知识抽象的优势。混合智能系统将符号信息插入神经网络,用训练示例细化初始知识,最后从训练好的网络中提取符号信息,以解释输出的计算过程。
2. 神经模糊集成
在混合智能系统中,显式和隐式规则可以通过模糊神经网络(FNN)、混合神经网络(HNN)、多层感知器(MLP)或神经模糊网络等以神经方式表示。模糊逻辑为认知不确定性下的推理提供了机制,而神经网络则为混合智能系统的连接主义实现提供了学习、适应、容错、并行性和泛化的优势。
2.1 隐式知识表示
隐式知识由连接主义结构表示,其内在表示基于神经元之间连接的数值权重。为了将隐式知识和显式模糊规则集成到同一个全局网络中,通常选择混合/模糊神经网络。
以一个通用的隐式知识模块(IKM)为例,它是一个多层神经结构,包括输入层、全连接的三层2型模糊神经网络(FNN2)和去模糊化层。
- 输入层 :将清晰的输入值传输到下一层,节点是单输入标准神经元,激活函数为恒等函数,与下一层的权重设为1。