Hadoop MapReduce 与关系型数据库的区别

本文探讨了Hadoop MapReduce与关系型数据库的区别,强调它们在应用场景上的互补性。关系型数据库适用于大量细粒度读写,依赖磁盘寻道时间,而Hadoop适合批量读写,依赖磁盘传输时间。MapReduce处理非结构化或半结构化数据,并可通过增加节点实现数据规模的线性扩展,适用于PB级数据处理。两者在大数据时代相互借鉴以提升性能。
摘要由CSDN通过智能技术生成

在比较两者的区别之前,首先应该清楚,两者的应用场景不同,在工业工程中两者是互相补充的角色。

为什么关系型数据库不能通过增加磁盘的方式来扩充分析能力,而hadoop却需要这么做呢?原因在于,关系型数据库主要应用于大量细粒化读写和更新数据的场景,而hadoop则主要用于批量读写(一次写入多次读取)的场景。对不连续的细粒度数据读写的性能主要取决于磁盘的寻道时间,连续大规模读写数据则取决于磁盘传输时间,两者有数量级上的差别。

另外,关系型数据库的数据应该是结构化的,而Hadoop(MapReduce)主要是非结构化或者半结构化的。结构化数据应当是结构性且无重复的。MapReduce的数据源则没有这样的要求。

当数据规模非常大的时候,MapReduce可以通过增加节点的数量来减少时间消耗。因为MapReduce会将数据分块,主要的功能性基元Map和Reduce又是可以并行的。所以,根据数据规模线性扩展集群大小,就可以保证处理时间保持不变。

总之,关系型数据库适合用于GB级以内的数据的高精度操作,MapReduce适合PB级及以上数据的低精度操作。且两者现在正互相学习各自长处来完善自己。

关系型数据库与MapReduce的对比
  关系型数据库系统 MapReduce
数据量 GB级 PB级
访问方式</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值