第十周 项目1-二叉树算法库

本文介绍了项目1的内容,重点探讨了如何构建一个二叉树算法库,包括各种操作和运算,如插入、查找、删除等。通过实例代码展示了其实现过程。
摘要由CSDN通过智能技术生成
/*  
* Copyright (c)2015,烟台大学计算机与控制工程学院  
* All rights reserved.  
* 文件名称:项目1.cpp  
* 作    者:孙钰坤 
* 完成日期:2015年11月30日  
* 版 本 号:v1.0  
* 问题描述:  定义二叉树的链式存储结构,实现其基本运算,并完成测试。  
* 输入描述: 无  
* 程序输出: 测试数据  
*/    

 


代码:


#ifndef BTREE_H_INCLUDED   
#define BTREE_H_INCLUDED   
#include <stdio.h>   
#include <malloc.h>   
#define MaxSize 100   
typedef char ElemType;  
typedef struct node  
{  
    ElemType data;              //数据元素   
    struct node *lchild;        //指向左孩子   
    struct node *rchild;        //指向右孩子   
} BTNode;  
void CreateBTNode(BTNode *&b,char *str);    //由str串创建二叉链   
BTNode *FindNode(BTNode *b,ElemType x);     //返回data域为x的节点指针   
BTNode *LchildNode(BTNode *p);              //返回*p节点的左孩子节点指针   
BTNode *RchildNode(BTNode *p);              //返回*p节点的右孩子节点指针   
int BTNodeDepth(BTNode *b);                 //求二叉树b的深度   
void DispBTNode(BTNode *b);                 //以括号表示法输出二叉树   
void DestroyBTNode(BTNode *&b);             //销毁二叉树   
#endif // BTREE_H_INCLUDED  

//二叉树基本运算函数   
  
  
void CreateBTNode(BTNode *&b,char *str)     //由str串创建二叉链   
{  
    BTNode *St[MaxSize],*p=NULL;  
    int top=-1,k,j=0;  
    char ch;  
    b=NULL;             //建立的二叉树初始时为空   
    ch=str[j];  
    while (ch!='\0')    //str未扫描完时循环   
    {  
        switch(ch)  
        {  
        case '(':  
            top++;  
            St[top]=p;  
            k=1;  
            break;      //为左节点   
        case ')':  
            top--;  
            break;  
        case ',':  
          k=2;  
            break;                          //为右节点   
        default:  
            p=(BTNode *)malloc(sizeof(BTNode));  
            p->data=ch;  
            p->lchild=p->rchild=NULL;  
            if (b==NULL)                    //p指向二叉树的根节点   
                b=p;  
            else                            //已建立二叉树根节点   
            {  
                switch(k)  
                {  
                case 1:  
                    St[top]->lchild=p;  
                    break;  
                case 2:  
                    St[top]->rchild=p;  
                    break;  
                }  
            }  
        }  
        j++;  
        ch=str[j];  
    }  
}  
BTNode *FindNode(BTNode *b,ElemType x)  //返回data域为x的节点指针   
{  
    BTNode *p;  
    if (b==NULL)  
       return NULL;  
    else if (b->data==x)  
        return b;  
    else  
    {  
        p=FindNode(b->lchild,x);  
        if (p!=NULL)  
            return p;  
        else  
            return FindNode(b->rchild,x);  
    }  
}  
BTNode *LchildNode(BTNode *p)   //返回*p节点的左孩子节点指针   
{  
    return p->lchild;  
}  
BTNode *RchildNode(BTNode *p)   //返回*p节点的右孩子节点指针   
{  
    return p->rchild;  
}  
int BTNodeDepth(BTNode *b)  //求二叉树b的深度   
{  
    int lchilddep,rchilddep;  
    if (b==NULL)  
        return(0);                          //空树的高度为0   
    else  
   {  
        lchilddep=BTNodeDepth(b->lchild);   //求左子树的高度为lchilddep   
        rchilddep=BTNodeDepth(b->rchild);   //求右子树的高度为rchilddep   
        return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);  
    }  
}  
void DispBTNode(BTNode *b)  //以括号表示法输出二叉树   
{  
    if (b!=NULL)  
    {  
        printf("%c",b->data);  
        if (b->lchild!=NULL || b->rchild!=NULL)  
        {  
            printf("(");  
            DispBTNode(b->lchild);  
            if (b->rchild!=NULL) printf(",");  
            DispBTNode(b->rchild);  
            printf(")");  
        }  
    }  
}
void DestroyBTNode(BTNode *&b)   //销毁二叉树   
{  
   if (b!=NULL)  
   {  
       DestroyBTNode(b->lchild);  
       DestroyBTNode(b->rchild);  
       free(b);  
   }  
}  

  
  
  
int main()  
{  
    BTNode *b,*p,*lp,*rp;;  
    printf("  (1)创建二叉树:");  
    CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");  
    printf("\n");  
    printf("  (2)输出二叉树:");  
    DispBTNode(b);  
    printf("\n");  
    printf("  (3)查找H节点:");  
    p=FindNode(b,'H');  
    if (p!=NULL)  
    {  
        lp=LchildNode(p);  
        if (lp!=NULL)  
            printf("左孩子为%c ",lp->data);  
       else  
            printf("无左孩子 ");  
        rp=RchildNode(p);  
        if (rp!=NULL)  
            printf("右孩子为%c",rp->data);  
        else  
            printf("无右孩子 ");  
    }  
    else  
        printf(" 未找到!");  
    printf("\n");  
   printf("  (4)二叉树b的深度:%d\n",BTNodeDepth(b));  
    printf("  (5)释放二叉树b\n");  
    DestroyBTNode(b);  
    return 0;  
}         


 

运算结果

 

 

 

知识点总结:定义二叉树算法库。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值